skip to main content


Search for: All records

Creators/Authors contains: "Beauchamp, J. L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Even though the general mechanism of photodynamic cancer therapy is known, the details and consequences of the reactions between the photosensitizer‐generated singlet oxygen and substrate molecules remain elusive at the molecular level. Using temoporfin as the photosensitizer, here we combine field‐induced droplet ionization mass spectrometry and acoustic levitation techniques to study the “wall‐less” oxidation reactions of 18:1 cardiolipin and 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phospho‐(1′‐rac‐glycerol) (POPG) mediated by singlet oxygen at the air–water interface of levitated water droplets. For both cardiolipin and POPG, every unsaturated oleyl chain is oxidized to an allyl hydroperoxide, which surprisingly is immune to further oxidation. This is attributed to the increased hydrophilicity of the oxidized chain, which attracts it toward the water phase, thereby increasing membrane permeability and eventually triggering cell death.

     
    more » « less
  2. Abstract

    Even though the general mechanism of photodynamic cancer therapy is known, the details and consequences of the reactions between the photosensitizer‐generated singlet oxygen and substrate molecules remain elusive at the molecular level. Using temoporfin as the photosensitizer, here we combine field‐induced droplet ionization mass spectrometry and acoustic levitation techniques to study the “wall‐less” oxidation reactions of 18:1 cardiolipin and 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phospho‐(1′‐rac‐glycerol) (POPG) mediated by singlet oxygen at the air–water interface of levitated water droplets. For both cardiolipin and POPG, every unsaturated oleyl chain is oxidized to an allyl hydroperoxide, which surprisingly is immune to further oxidation. This is attributed to the increased hydrophilicity of the oxidized chain, which attracts it toward the water phase, thereby increasing membrane permeability and eventually triggering cell death.

     
    more » « less