skip to main content


Search for: All records

Creators/Authors contains: "Belmont, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change is a threat to ski resorts, the ski industry, and mountain communities that rely on ski tourism. Ski resorts may be able to mitigate some of the social and economic impacts caused by climate change with proactive adaptation strategies. Using historical weather data, future climate projections, and interviews with ski resort managers in Utah (United States), this research investigates the effects of climate change on ski resorts across the state. We examine temperature change at all resorts within the state from 1980– 2018 and climate projections from 2021–2100 under different climate change scenarios (RCPs 2.6, 4.5, and 8.5). We also report on semistructured interviews with resort managers to provide insights into how resort leadership perceives the impacts of climate change, is implementing adaptation strategies, and is addressing barriers to adaptation. Many resorts in Utah are warming faster than global averages, and minimum temperatures are rising faster than maximum temperatures. By the end of the century, winter (December–March) minimum daily temperatures in Utah could warm an additional 6.08C under the RCP 8.5 scenario near northern Utah resorts and 6.68C near southern Utah resorts. Resort managers are concerned about shorter season lengths, shifting ski seasons, less snow cover, and poorer snow quality. Many resorts are already adapting, with the most common adaptations being snowmaking and diversifying outdoor recreation offerings (particularly during the summer and shoulder seasons). Barriers to adaptation reported by managers include financial costs, adequate water availability for snowmaking, and uncertainty about climate change projections. Climate change is already impacting Utah ski resorts, but adaptation practices can reduce the negative impacts to some degree at most resorts. 
    more » « less
  2. Abstract

    Observatory‐scale data collection efforts allow unprecedented opportunities for integrative, multidisciplinary investigations in large, complex watersheds, which can affect management decisions and policy. Through the National Science Foundation‐funded REACH (REsilience under Accelerated CHange) project, in collaboration with the Intensively Managed Landscapes‐Critical Zone Observatory, we have collected a series of multidisciplinary data sets throughout the Minnesota River Basin in south‐central Minnesota, USA, a 43,400‐km2tributary to the Upper Mississippi River. Postglacial incision within the Minnesota River valley created an erosional landscape highly responsive to hydrologic change, allowing for transdisciplinary research into the complex cascade of environmental changes that occur due to hydrology and land use alterations from intensive agricultural management and climate change. Data sets collected include water chemistry and biogeochemical data, geochemical fingerprinting of major sediment sources, high‐resolution monitoring of river bluff erosion, and repeat channel cross‐sectional and bathymetry data following major floods. The data collection efforts led to development of a series of integrative reduced complexity models that provide deeper insight into how water, sediment, and nutrients route and transform through a large channel network and respond to change. These models represent the culmination of efforts to integrate interdisciplinary data sets and science to gain new insights into watershed‐scale processes in order to advance management and decision making. The purpose of this paper is to present a synthesis of the data sets and models, disseminate them to the community for further research, and identify mechanisms used to expand the temporal and spatial extent of short‐term observatory‐scale data collection efforts.

     
    more » « less