skip to main content


Search for: All records

Creators/Authors contains: "Bemmels, Jordan B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Andes are a major dispersal barrier for lowland rain forest plants and animals, yet hundreds of lowland tree species are distributed on both sides of the northern Andes, raising questions about how the Andes influenced their biogeographic histories and population genetic structure. To explore these questions, we generated standardized datasets of thousands of SNPs from paired populations of 49 tree species co‐distributed in rain forest tree communities located in Panama and Amazonian Ecuador and calculated genetic diversity (π) and absolute genetic divergence (dXY) within and between populations, respectively. We predicted (1) higher genetic diversity in the ancestral source region (east or west of the Andes) for each taxon and (2) correlation of genetic statistics with species attributes, including elevational range and life‐history strategy. We found that genetic diversity was higher in putative ancestral source regions, possibly reflecting founder events during colonization. We found little support for a relationship between genetic divergence and species attributes except that species with higher elevational range limits exhibited higherdXY, implying older divergence times. One possible explanation for this pattern is that dispersal through mountain passes declined in importance relative to dispersal via alternative lowland routes as the Andes experienced uplift. We found no difference in mean genetic diversity between populations in Central America and the Amazon. Overall, our results suggest that dispersal across the Andes has left enduring signatures in the genetic structure of widespread rain forest trees. We outline additional hypotheses to be tested with species‐specific case studies.

     
    more » « less
  2. Abdelaziz, Mohamed (Ed.)
    Abstract Individuals within natural populations can experience very different abiotic and biotic conditions across small spatial scales owing to microtopography and other micro-environmental gradients. Ecological and evolutionary studies often ignore the effects of micro-environment on plant population and community dynamics. Here, we explore the extent to which fine-grained variation in abiotic and biotic conditions contributes to within-population variation in trait expression and genetic diversity in natural plant populations. Furthermore, we consider whether benign microhabitats could buffer local populations of some plant species from abiotic stresses imposed by rapid anthropogenic climate change. If microrefugia sustain local populations and communities in the short term, other eco-evolutionary processes, such as gene flow and adaptation, could enhance population stability in the longer term. We caution, however, that local populations may still decline in size as they contract into rare microhabitats and microrefugia. We encourage future research that explicitly examines the role of the micro-environment in maintaining genetic variation within local populations, favouring the evolution of phenotypic plasticity at local scales and enhancing population persistence under global change. 
    more » « less
  3. Abstract

    High‐throughput DNA sequencing facilitates the analysis of large portions of the genome in nonmodel organisms, ensuring high accuracy of population genetic parameters. However, empirical studies evaluating the appropriate sample size for these kinds of studies are still scarce. In this study, we use double‐digest restriction‐associated DNA sequencing (ddRADseq) to recover thousands of single nucleotide polymorphisms (SNPs) for two physically isolated populations ofAmphirrhox longifolia(Violaceae), a nonmodel plant species for which no reference genome is available. We used resampling techniques to construct simulated populations with a random subset of individuals and SNPs to determine how many individuals and biallelic markers should be sampled for accurate estimates of intra‐ and interpopulation genetic diversity. We identified 3646 and 4900 polymorphic SNPs for the two populations ofA. longifolia, respectively. Our simulations show that, overall, a sample size greater than eight individuals has little impact on estimates of genetic diversity withinA. longifoliapopulations, when 1000 SNPs or higher are used. Our results also show that even at a very small sample size (i.e. two individuals), accurate estimates ofFSTcan be obtained with a large number of SNPs (≥1500). These results highlight the potential of high‐throughput genomic sequencing approaches to address questions related to evolutionary biology in nonmodel organisms. Furthermore, our findings also provide insights into the optimization of sampling strategies in the era of population genomics.

     
    more » « less