skip to main content


Search for: All records

Creators/Authors contains: "Benea-Chelmus, Ileana-Cristina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Cavities concentrate light and enhance its interaction with matter. Confining to microscopic volumes is necessary for many applications but space constraints in such cavities limit the design freedom. Here we demonstrate stable optical microcavities by counteracting the phase evolution of the cavity modes using an amorphous Silicon metasurface as cavity end mirror. Careful design allows us to limit the metasurface scattering losses at telecom wavelengths to less than 2% and using a distributed Bragg reflector as metasurface substrate ensures high reflectivity. Our demonstration experimentally achieves telecom-wavelength microcavities with quality factors of up to 4600, spectral resonance linewidths below 0.4 nm, and mode volumes below$$2.7{\lambda }^{3}$$2.7λ3. The method introduces freedom to stabilize modes with arbitrary transverse intensity profiles and to design cavity-enhanced hologram modes. Our approach introduces the nanoscopic light control capabilities of dielectric metasurfaces to cavity electrodynamics and is industrially scalable using semiconductor manufacturing processes.

     
    more » « less
  2. Abstract

    Tailored nanostructures provide at-will control over the properties of light, with applications in imaging and spectroscopy. Active photonics can further open new avenues in remote monitoring, virtual or augmented reality and time-resolved sensing. Nanomaterials withχ(2)nonlinearities achieve highest switching speeds. Current demonstrations typically require a trade-off: they either rely on traditionalχ(2)materials, which have low non-linearities, or on application-specific quantum well heterostructures that exhibit a highχ(2)in a narrow band. Here, we show that a thin film of organic electro-optic molecules JRD1 in polymethylmethacrylate combines desired merits for active free-space optics: broadband record-high nonlinearity (10-100 times higher than traditional materials at wavelengths 1100-1600 nm), a custom-tailored nonlinear tensor at the nanoscale, and engineered optical and electronic responses. We demonstrate a tuning of optical resonances by Δλ = 11 nm at DC voltages and a modulation of the transmitted intensity up to 40%, at speeds up to 50 MHz. We realize 2 × 2 single- and 1 × 5 multi-color spatial light modulators. We demonstrate their potential for imaging and remote sensing. The compatibility with compact laser diodes, the achieved millimeter size and the low power consumption are further key features for laser ranging or reconfigurable optics.

     
    more » « less
  3. Electro-optic quantum coherent interfaces map the amplitude and phase of a quantum signal directly to the phase or intensity of a probe beam. At terahertz frequencies, a fundamental challenge is not only to sense such weak signals (due to a weak coupling with a probe in the near-infrared) but also to resolve them in the time domain. Cavity confinement of both light fields can increase the interaction and achieve strong coupling. Using this approach, current realizations are limited to low microwave frequencies. Alternatively, in bulk crystals, electro-optic sampling was shown to reach quantum-level sensitivity of terahertz waves. Yet, the coupling strength was extremely weak. Here, we propose an on-chip architecture that concomitantly provides subcycle temporal resolution and an extreme sensitivity to sense terahertz intracavity fields below 20 V/m. We use guided femtosecond pulses in the near-infrared and a confinement of the terahertz wave to a volume ofVTHz∼<#comment/>10−<#comment/>9(λ<#comment/>THz/2)3in combination with ultraperformant organic molecules (r33=170pm/V) and accomplish a record-high single-photon electro-optic coupling rate ofgeo=2π<#comment/>×<#comment/>0.043GHz, 10,000 times higher than in recent reports of sensing vacuum field fluctuations in bulk media. Via homodyne detection implemented directly on chip, the interaction results into an intensity modulation of the femtosecond pulses. The single-photon cooperativity isC0=1.6×<#comment/>10−<#comment/>8, and the multiphoton cooperativity isC=0.002at room temperature. We show><#comment/>70dBdynamic range in intensity at 500 ms integration under irradiation with a weak coherent terahertz field. Similar devices could be employed in future measurements of quantum states in the terahertz at the standard quantum limit, or for entanglement of subsystems on subcycle temporal scales, such as terahertz and near-infrared quantum bits.

     
    more » « less