skip to main content


Search for: All records

Creators/Authors contains: "Beniamini, Paz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Kilonovae are optical transients following the merger of neutron star binaries, which are powered by the r-process heating of merger ejecta. However, if a merger remnant is a long-lived supramassive neutron star supported by its uniform rotation, it will inject energy into the ejecta through spin-down power. The energy injection can boost the peak luminosity of a kilonova by many orders of magnitudes, thus significantly increasing the detectable volume. Therefore, even if such events are only a small fraction of the kilonova population, they could dominate the detection rates. However, after many years of optical sky surveys, no such event has been confirmed. In this work, we build a boosted kilonova model with rich physical details, including the description of the evolution and stability of a proto neutron star, and the energy absorption through X-ray photoionization. We simulate the observation prospects and find the only way to match the absence of detection is to limit the energy injection by the newly born magnetar to only a small fraction of the neutron star rotational energy, thus they should collapse soon after the merger. Our result indicates that most supramassive neutron stars resulting from binary neutron star mergers are short lived and they are likely to be rare in the Universe.

     
    more » « less
  2. ABSTRACT

    Most fast radio burst (FRB) models can be divided into two groups based on the distance of the radio emission region from the central engine. The first group of models, the so-called ‘nearby’ or magnetospheric models, invoke FRB emission at distances of 109 cm or less from the central engine, while the second ‘far-away’ models involve emission from distances of 1011 cm or greater. The lateral size for the emission region for the former class of models (≲107 cm) is much smaller than the second class of models (≳109 cm). We propose that an interstellar scattering screen in the host galaxy is well-suited to differentiate between the two classes of models, particularly based on the level of modulations in the observed intensity with frequency, in the regime of strong diffractive scintillation. This is because the diffractive length scale for the host galaxy’s interstellar medium scattering screen is expected to lie between the transverse emission-region sizes for the ‘nearby’ and the ‘far-away’ class of models. Determining the strength of flux modulation caused by scintillation (scintillation modulation index) across the scintillation bandwidth (∼1/2πδts) would provide a strong constraint on the FRB radiation mechanism when the scatter broadening (δts) is shown to be from the FRB host galaxy. The scaling of the scintillation bandwidth as ∼ν4.4 may make it easier to determine the modulation index at ≳ 1 GHz.

     
    more » « less
  3. ABSTRACT

    We describe how gravitational lensing of fast radio bursts (FRBs) is affected by a plasma screen in the vicinity of the lens or somewhere between the source and the observer. Wave passage through a turbulent medium affects gravitational image magnification, lensing probability (particularly for strong magnification events), and the time delay between images. The magnification is suppressed because of the broadening of the angular size of the source due to scattering by the plasma. The time delay between images is modified as the result of different dispersion measures (DM) along photon trajectories for different images. Each of the image light curves is also broadened due to wave scattering so that the images could have distinct temporal profiles. The first two effects are most severe for stellar and sub-stellar mass lens, and the last one (scatter broadening) for lenses and plasma screens at cosmological distances from the source/observer. This could limit the use of FRBs to measure their cosmic abundance. On the other hand, when the time delay between images is large, such that the light curve of a transient source has two or more well-separated peaks, the different DMs along the wave paths of different images can probe density fluctuations in the IGM on scales ≲10−6 rad and explore the patchy reionization history of the universe using lensed FRBs at high redshifts. Different rotation measures (RM) along two-image paths can convert linearly polarized radiation from a source to partial circular polarization.

     
    more » « less
  4. ABSTRACT

    We show that the 216.8 ± 0.1 ms periodicity reported for the fast radio burst (FRB) 20191221A is very constraining for burst models. The high accuracy of burst periodicity (better than one part in 103), and the 2 per cent duty cycle (ratio of burst duration and interburst interval), suggest a pulsar-like rotating beam model for the observed activity; the radio waves are produced along open field lines within ∼107 cm of the neutron star surface, and the beam periodically sweeps across the observer as the star spins. According to this picture, FRB 20191221A is a factor ∼1012 scaled up version of galactic pulsars with one major difference, whereas pulsars convert rotational kinetic energy to EM waves and the outbursts of 20191221A require conversion of magnetic energy to radiation.

     
    more » « less
  5. ABSTRACT

    We describe how the observed polarization properties of an astronomical object are related to its intrinsic polarization properties and the finite temporal and spectral resolutions of the observing device. Moreover, we discuss the effect that a scattering screen, with non-zero magnetic field, between the source and observer has on the observed polarization properties. We show that the polarization properties are determined by the ratio of observing bandwidth and coherence bandwidth of the scattering screen and the ratio of temporal resolution of the instrument and the variability time of screen, as long as the length over which the Faraday rotation induced by the screen changes by ∼π is smaller than the size of the screen visible to the observer. We describe the conditions under which a source that is 100 per cent linearly polarized intrinsically might be observed as partially depolarized, and how the source’s temporal variability can be distinguished from the temporal variability induced by the scattering screen. In general, linearly polarized waves passing through a magnetized scattering screen can develop a significant circular polarization. We apply the work to the observed polarization properties of a few fast radio bursts (FRBs), and outline potential applications to pulsars.

     
    more » « less
  6. ABSTRACT

    A repeating source of fast radio bursts (FRBs) is recently discovered from a globular cluster of M81. Association with a globular cluster (or other old stellar systems) suggests that strongly magnetized neutron stars, which are the most likely objects responsible for FRBs, are born not only when young massive stars undergo core-collapse, but also by mergers of old white dwarfs. We find that the fractional contribution to the total FRB rate by old stellar populations is at least a few per cent, and the precise fraction can be constrained by FRB searches in the directions of nearby galaxies, both star-forming and elliptical ones. Using very general arguments, we show that the activity time of the M81-FRB source is between 104 and 106 yr, and more likely of the order of 105 yr. The energetics of radio outbursts put a lower limit on the magnetic field strength of 10$^{13}\,$G, and the spin period $\gtrsim 0.2\,$s, thereby ruling out the source being a milli-second pulsar. The upper limit on the persistent X-ray luminosity (provided by Chandra), together with the high FRB luminosity and frequent repetitions, severely constrains (or rules out) the possibility that the M81-FRB is a scaled-up version of giant pulses from Galactic pulsars. Finally, the 50-ns variability time of the FRB light curve suggests that the emission is produced in a compact region inside the neutron star magnetosphere, as it cannot be accounted for when the emission is at distances $\gtrsim 10^{10}\rm \, cm$.

     
    more » « less
  7. Abstract

    We introduce a toy model for the time–frequency structure of fast radio bursts, in which the observed emission is produced as a narrowly peaked intrinsic spectral energy distribution sweeps down in frequency across the instrumental bandpass as a power law in time. Though originally motivated by emission models that invoke a relativistic shock, the model could in principle apply to a wider range of emission scenarios. We quantify the burst’s detectability using the frequency bandwidth over which most of its signal-to-noise ratio is accumulated. We demonstrate that, by varying just a single parameter of the toy model—the power-law indexβof the frequency drift rate—one can transform a long (and hence preferentially time-resolved) burst with a narrow time-integrated spectrum into a shorter burst with a broad power-law time-integrated spectrum. We suggest that source-to-source diversity in the value ofβcould generate the dichotomy between burst duration and frequency-bandwidth recently found by CHIME/FRB. In shock models, the value ofβis related to the radial density profile of the external medium, which, in light of the preferentially longer duration of bursts from repeating sources, may point to diversity in the external environments surrounding repeating versus one-off FRB sources.

     
    more » « less
  8. null (Ed.)
    ABSTRACT We describe three different methods for exploring the hydrogen reionization epoch using fast radio bursts (FRBs) and provide arguments for the existence of FRBs at high redshift (z). The simplest way, observationally, is to determine the maximum dispersion measure (DMmax) of FRBs for an ensemble that includes bursts during the reionization. The DMmax provides information regarding reionization much like the optical depth of the cosmic microwave background to Thomson scattering does, and it has the potential to be more accurate than constraints from Planck, if DMmax can be measured to a precision better than 500 pccm−3. Another method is to measure redshifts of about 40 FRBs between z of 6 and 10 with ${\sim}10{{\ \rm per\ cent}}$ accuracy to obtain the average electron density in four different z-bins with ${\sim}4{{\ \rm per\ cent}}$ accuracy. These two methods do not require knowledge of the FRB luminosity function and its possible redshift evolution. Finally, we show that the reionization history is reflected in the number of FRBs per unit DM, given a fluence limited survey of FRBs that includes bursts during the reionization epoch; we show using FIRE simulations that the contribution to DM from the FRB host galaxy and circumgalactic medium during the reionization era is a small fraction of the observed DM. This third method requires no redshift information but does require knowledge of the FRB luminosity function. 
    more » « less
  9. null (Ed.)
    ABSTRACT A few fast radio bursts’ (FRBs) light curves have exhibited large intrinsic modulations of their flux on extremely short ($t_{\rm r}\sim 10\, \mu$s) time-scales, compared to pulse durations (tFRB ∼ 1 ms). Light-curve variability time-scales, the small ratio of rise time of the flux to pulse duration, and the spectro-temporal correlations in the data constrain the compactness of the source and the mechanism responsible for the powerful radio emission. The constraints are strongest when radiation is produced far (≳1010 cm) from the compact object. We describe different physical set-ups that can account for the observed tr/tFRB ≪ 1 despite having large emission radii. The result is either a significant reduction in the radio production efficiency or distinct light-curve features that could be searched for in observed data. For the same class of models, we also show that due to high-latitude emission, if a flux f1(ν1) is observed at t1 then at a lower frequency ν2 < ν1 the flux should be at least (ν2/ν1)2f1 at a slightly later time (t2 = t1ν1/ν2) independent of the duration and spectrum of the emission in the comoving frame. These features can be tested, once light-curve modulations due to scintillation are accounted for. We provide the time-scales and coherence bandwidths of the latter for a range of possibilities regarding the physical screens and the scintillation regime. Finally, if future highly resolved FRB light curves are shown to have intrinsic variability extending down to ${\sim}\mu$s time-scales, this will provide strong evidence in favour of magnetospheric models. 
    more » « less