skip to main content


Search for: All records

Creators/Authors contains: "Berg, Stephanie M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 25, 2024
  2. Dissolved organic matter (DOM) is a complex mixture of organic compounds found in all natural waters. Its composition affects its reactivity towards numerous processes. Its composition is a function of both its source (e.g., allochthonous or autochthonous) as well as the extent of environmental processing it has undergone (e.g., chemical or biological degradation). Ultraviolet-visible (UV-vis) spectroscopy is an analytical technique commonly used to assess the composition of dissolved organic matter in water samples. Here, we present spectra from Lake Mendota samples collected from June - November in 2017 at the surface of Lake Mendota as well as at specific depths within the water column. All samples were collected near the NTL-LTER research buoy. Absorbance values are listed for wavelengths 200 - 800 nm for each sample. 
    more » « less
  3. Dissolved organic matter (DOM) is a complex mixture of organic compounds found in all natural waters. Its composition affects its reactivity towards numerous processes. Its composition is a function of both its source (e.g., allochthonous or autochthonous) as well as the extent of environmental processing it has undergone (e.g., chemical or biological degradation). Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) allows for the characterization of dissolved organic matter at the molecular level. The water sample was collected near the NTL-LTER research buoy on Lake Mendota. Formula assignments were made to raw mass to charge ratios detected in the mass spectrum using a custom processing script and resulting in a list of chemical formulas making up the DOM sample. 
    more » « less
  4. Abstract

    Dissolved organic matter (DOM) is an intermediate between organic carbon formed by primary producers and carbon dioxide (CO2) produced through respiration, making it a key component of the carbon cycle in aquatic ecosystems. Its composition influences the routes of mineralization. Here, we evaluate DOM composition as a function of time and depth in Lake Mendota, a highly productive eutrophic lake that stratifies in warm months and is located in Madison, Wisconsin, USA. Dissolved organic carbon concentrations and optical properties are presented for 73 samples collected at a single location at varying depths within the water column from June to November. A subset of samples is analyzed by Fourier transform‐ion cyclotron resonance mass spectrometry (FT‐ICR MS) to investigate DOM composition at the molecular level. Temporally, increases in more oxidized formulas are observed in both the epilimnion and hypolimnion. At the surface, correlations between DOM formulas and both chlorophyll concentrations and light intensity show that photochemical reactions contribute to DOM oxidation. In the hypolimnion, redox conditions and interactions with sediments likely influence temporal compositional change. Our results show DOM composition varies with depth with more highly oxidized formulas identified deeper in the water column. However, DOM composition varies more temporally than by location within the water column. This work has implications for climate change as DOM photooxidation in lakes represents an understudied flux of CO2to the atmosphere. Additionally, lake eutrophication is increasing due to warming temperatures and this data set yields detailed molecular information about DOM composition and processing in such lakes.

     
    more » « less
  5. Abstract

    High‐resolution mass spectrometry (HRMS) has become a vital tool for dissolved organic matter (DOM) characterization. The upward trend in HRMS analysis of DOM presents challenges in data comparison and interpretation among laboratories operating instruments with differing performance and user operating conditions. It is therefore essential that the community establishes metric ranges and compositional trends for data comparison with reference samples so that data can be robustly compared among research groups. To this end, four identically prepared DOM samples were each measured by 16 laboratories, using 17 commercially purchased instruments, using positive‐ion and negative‐ion mode electrospray ionization (ESI) HRMS analyses. The instruments identified ~1000 common ions in both negative‐ and positive‐ion modes over a wide range ofm/zvalues and chemical space, as determined by van Krevelen diagrams. Calculated metrics of abundance‐weighted average indices (H/C, O/C, aromaticity, andm/z) of the commonly detected ions showed that hydrogen saturation and aromaticity were consistent for each reference sample across the instruments, while average mass and oxygenation were more affected by differences in instrument type and settings. In this paper we present 32 metric values for future benchmarking. The metric values were obtained for the four different parameters from four samples in two ionization modes and can be used in future work to evaluate the performance of HRMS instruments.

     
    more » « less