skip to main content


Search for: All records

Creators/Authors contains: "Bernhardt, Emily S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. Soper, Fiona (Ed.)
    Nitrogen (N) is a critical element in many ecological and biogeochemical processes in forest ecosystems. Cycling of N is sensitive to changes in climate, atmospheric carbon dioxide (CO2) concentrations, and air pollution. Streamwater nitrate draining a forested ecosystem can indicate how an ecosystem is responding to these changes. We observed a pulse in streamwater nitrate concentration and export at a long-term forest research site in eastern North America that resulted in a 10-fold increase in nitrate export compared to observations over the prior decade. The pulse in streamwater nitrate occurred in a reference catchment in the 2013 water year, but was not associated with a distinct disturbance event. We analyzed a suite of environmental variables to explore possible causes. The correlation between each environmental variable and streamwater nitrate concentration was consistently higher when we accounted for the antecedent conditions of the variable prior to a given streamwater observation. In most cases, the optimal antecedent period exceeded two years. We assessed the most important variables for predicting streamwater nitrate concentration by training a machine learning model to predict streamwater nitrate concentration in the years preceding and during the streamwater nitrate pulse. The results of the correlation and machine learning analyses suggest that the pulsed increase in streamwater nitrate resulted from both (1) decreased plant uptake due to lower terrestrial gross primary production, possibly due to increased soil frost or reduced solar radiation or both; and (2) increased net N mineralization and nitrification due to warm temperatures from 2010 to 2013. Additionally, variables associated with hydrological transport of nitrate, such as maximum stream discharge, emerged as important, suggesting that hydrology played a role in the pulse. Overall, our analyses indicate that the streamwater nitrate pulse was caused by a combination of factors that occurred in the years prior to the pulse, not a single disturbance event. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available May 30, 2024
  5. Abstract

    Accurately estimating stream discharge is crucial for many ecological, biogeochemical, and hydrologic analyses. As of September 2022, The National Ecological Observatory Network (NEON) provided up to 5 years of continuous discharge estimates at 28 streams across the United States. NEON created rating curves at each site in a Bayesian framework, parameterized using hydraulic controls and manual measurements of discharge. Here we evaluate the reliability of these discharge estimates with three approaches. We (1) compared predicted to observed discharge, (2) compared predicted to observed stage, and (3) calculated the proportion of discharge estimates extrapolated beyond field measurements. We considered 1,523 site-months of continuous streamflow predictions published by NEON. Of these, 39% met our highest quality criteria, 11% fell into an intermediate classification, and 50% of site-months were classified as unreliable. We provided diagnostic metrics and categorical evaluations of continuous discharge and stage estimates by month for each site, enabling users to rapidly query for suitable NEON data.

     
    more » « less
  6. In streams macroinvertebrate density and disturbance-sensitive taxa have decreased, and disturbance-tolerant taxa have increased. 
    more » « less
    Free, publicly-accessible full text available May 3, 2024