skip to main content


Search for: All records

Creators/Authors contains: "Bhattacharyya, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Magnetic flux ropes (MFRs) play an important role in high-energetic events like solar flares and coronal mass ejections in the solar atmosphere. Importantly, solar observations suggest an association of some flaring events with quadrupolar magnetic configurations. However, the formation and subsequent evolution of MFRs in such magnetic configurations still need to be fully understood. In this paper, we present idealized magnetohydrodynamics (MHD) simulations of MFR formation in a quadrupolar magnetic configuration. A suitable initial magnetic field having a quadrupolar configuration is constructed by modifying a three-dimensional linear force-free magnetic field. The initial magnetic field contains neutral lines, which consist of X-type null points. The simulated dynamics initially demonstrate the oppositely directed magnetic field lines located across the polarity inversion lines (PILs) moving towards each other, resulting in magnetic reconnections. Due to these reconnections, four highly twisted MFRs form over the PILs. With time, the foot points of the MFRs move towards the X-type neutral lines and reconnect, generating complex magnetic structures around the neutral lines, thus making the MFR topology more complex in the quadrupolar configuration than those formed in bipolar loop systems. Further evolution reveals the non-uniform rise of the MFRs. Importantly, the simulations indicate that the pre-existing X-type null points in magnetic configurations can be crucial to the evolution of the MFRs and may lead to the observed brightenings during the onset of some flaring events in the quadrupolar configurations.

     
    more » « less
    Free, publicly-accessible full text available June 22, 2024
  2. Abstract This work analyzes the Hall magnetohydrodynamics (HMHD) and magnetohydrodynamics (MHD) numerical simulations of a flaring solar active region as a test bed while idealizing the coronal Alfvén speed to be less by two orders of magnitude. HMHD supports faster magnetic reconnection and shows richer complexity in magnetic field line evolution compared to the MHD. The magnetic reconnections triggering the flare are explored by numerical simulations augmented with relevant multiwavelength observations. The initial coronal magnetic field is constructed by non-force-free extrapolation of photospheric vector magnetic field. Magnetic structure involved in the flare is identified to be a flux rope, with its overlying magnetic field lines constituting the quasi-separatrix layers (QSLs) along with a three-dimensional null point and a null line. Compared to the MHD simulation, the HMHD simulation shows a higher and faster ascent of the rope together with the overlying field lines, which further reconnect at the QSL located higher up in the corona. The footpoints of the field lines match better with the observations for the HMHD case, with the central part of the flare ribbon located at the chromosphere. Additionally, field lines are found to rotate in a circular pattern in the HMHD, whereas no such rotation is seen in the MHD results. Interestingly, plasma is also observed to be rotating in a cospatial chromospheric region, which makes the HMHD simulation more credible. Based on the aforementioned agreements, HMHD simulation is found to agree better with observations and thus opens up a novel avenue to explore. 
    more » « less
  3. null (Ed.)
  4. Abstract A search for highly electrically charged objects (HECOs) and magnetic monopoles is presented using 2.2 $$\hbox {fb}{^{-1}}$$ fb - 1 of $$p-p$$ p - p collision data taken at a centre of mass energy (E $$_{CM}$$ CM ) of 8 TeV by the MoEDAL detector during LHC’s Run-1. The data were collected using MoEDAL’s prototype Nuclear Track Detectord array and the Trapping Detector array. The results are interpreted in terms of Drell–Yan pair production of stable HECO and monopole pairs with three spin hypotheses (0, 1/2 and 1). The search provides constraints on the direct production of magnetic monopoles carrying one to four Dirac magnetic charges and with mass limits ranging from 590 GeV/c $$^{2}$$ 2 to 1 TeV/c $$^{2}$$ 2 . Additionally, mass limits are placed on HECOs with charge in the range 10 e to 180 e , where e is the charge of an electron, for masses between 30 GeV/c $$^{2}$$ 2 and 1 TeV/c $$^{2}$$ 2 . 
    more » « less
  5. Free, publicly-accessible full text available June 1, 2024