skip to main content


Search for: All records

Creators/Authors contains: "Bianchi, Thomas S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In salt marshes of the Southeastern USA, purple marsh crabs (Sesarma reticulatum), hereafterSesarma, aggregate in grazing and burrowing fronts at the heads of tidal creeks, accelerating creek incision into marsh platforms. We explored the effects of this keystone grazer and sediment engineer on salt marsh sediment accumulation, hydrology, and carbon (C) and nitrogen (N) turnover using radionuclides (210Pb and7Be), total hydrolyzable amino acids (THAA), and C and N stable isotopes (δ13C and δ15N) in sediment from pairedSesarma-grazed and un-grazed creeks.Sesarma-grazed-creek sediments exhibited greater bioturbation and tidal inundation compared to sediments in un-grazed creeks, as indicated by larger210Pb and7Be inventories. Total organic carbon (TOC) to total nitrogen (TN) weight ratios (C:N) were higher and δ15N values were lower in grazed-creek sediments than in un-grazed-creek sediments, suggestingSesarmaremove and assimilate N in their tissues, and excrete N with lower δ15N values into sediments. In support of this inference, the percent total carbon (TC) and percent TOC declined by nearly half, percent TN decreased by ~ 80%, and the C:N ratio exhibited a ~ threefold increase betweenSesarmafore-gut and hind-gut contents. An estimated 91% ofSesarma’s diet was derived fromSpartina alterniflora,the region’s dominant salt marsh plant. We found that, asSesarmagrazing fronts progress across marsh landscapes, they enhance the decay ofSpartina-derived organic matter and prolong marsh tidal inundation. These findings highlight the need to better account for the effects of keystone grazers and sediment engineers, likeSesarma, in estimates of the stability and size of blue C stores in coastal wetlands.

     
    more » « less
  2. Free, publicly-accessible full text available June 1, 2024
  3. Abstract

    The use of loss on ignition (LOI) measurements of soil organic matter (SOM) to estimate soil organic carbon (OC) content is a decades-old practice. While there are limitations and uncertainties to this approach, it continues to be necessary for many coastal wetlands researchers and conservation practitioners without access to an elemental analyzer. Multiple measurement, reporting, and verification (MRV) standards recognize the need (and uncertainty) for using this method. However, no framework exists to explain the substantial differences among equations that relate SOM to OC; consequently, equation selection can be a haphazard process leading to widely divergent and inaccurate estimates. To address this lack of clarity, we used a dataset of 1,246 soil samples from 17 mangrove regions in North, Central, and South America, and calculated SOM to OC conversion equations for six unique types of coastal environmental setting. A framework is provided for understanding differences and selecting an equation based on a study region’s SOM content and whether mineral sediments are primarily terrigenous or carbonate in origin. This approach identifies the positive dependence of conversion equation slopes on regional mean SOM content and indicates a distinction between carbonate settings with mean (± 1 S.E.) OC:SOM of 0.47 (0.002) and terrigenous settings with mean OC:SOM of 0.32 (0.018). This framework, focusing on unique coastal environmental settings, is a reminder of the global variability in mangrove soil OC content and encourages continued investigation of broadscale factors that contribute to soil formation and change in blue carbon settings.

     
    more » « less
  4. null (Ed.)
    Plastic contamination of the environment is a global problem whose magnitude justifies the consideration of plastics as emergent geomaterials with chemistries not previously seen in Earth’s history. At the elemental level, plastics are predominantly carbon. The comparison of plastic stocks and fluxes to those of carbon reveals that the quantities of plastics present in some ecosystems rival the quantity of natural organic carbon and suggests that geochemists should now consider plastics in their analyses. Acknowledging plastics as geomaterials and adopting geochemical insights and methods can expedite our understanding of plastics in the Earth system. Plastics also can be used as global-scale tracers to advance Earth system science. 
    more » « less
  5. Blue carbon habitats, such as mangroves and salt marshes, have been recognized as carbon burial hotspots; however, methods on measuring blue carbon stocks have varied and thus leave uncertainty in global blue carbon stock estimates. This study analyzes blue carbon stocks in northern Florida wetlands along the Atlantic and Gulf coasts. Carbon measurements within 1–3m length vibracores yield total core stocks of 9.9–21.5 kgC·m −2 and 7.7–10.9 kgC·m −2 for the Atlantic and Gulf coast cores, respectively. Following recent IPCC guidelines, blue carbon stock estimates in the top meter are 7.0 kgC·m −2 –8.0 kgC·m −2 and 6.1 kgC·m −2 –8.6 kgC·m −2 for the Atlantic and Gulf cores, respectively. Changes in stable isotopic (δ 13 C, C/N) and lignin biomarker (C/V) indices suggest both coastlines experienced salt marsh and mangrove transgressions into non-blue carbon habitats during the mid- to late-Holocene following relative sea-level rise. These transgressions impact carbon storage within the cores as the presence of carbon-poor soils, characteristic of non-blue carbon habitats, result in lower 1m carbon stocks in north Florida Gulf wetlands, and a deeper extent of carbon-rich soils, characteristic of blue carbon habitats, drive higher 1m and total carbon stocks in north Florida Atlantic wetlands. Future blue carbon research should assess carbon stocks down to bedrock when possible, as land-cover and/or climate change can impact different depths across localities. Ignoring carbon-rich soil below the top meter of soil may underestimate potential carbon emissions based on these changes. 
    more » « less
  6. null (Ed.)
    Abstract. Biogeochemistry has an important role to play in manyenvironmental issues of current concern related to global change and air,water, and soil quality. However, reliable predictions and tangibleimplementation of solutions, offered by biogeochemistry, will need furtherintegration of disciplines. Here, we refocus on how further developing andstrengthening ties between biology, geology, chemistry, and social scienceswill advance biogeochemistry through (1) better incorporation of mechanisms,including contemporary evolutionary adaptation, to predict changingbiogeochemical cycles, and (2) implementing new and developing insights fromsocial sciences to better understand how sustainable and equitable responsesby society are achieved. The challenges for biogeochemists in the 21stcentury are formidable and will require both the capacity to respond fast topressing issues (e.g., catastrophic weather events and pandemics) andintense collaboration with government officials, the public, andinternationally funded programs. Keys to success will be the degree to whichbiogeochemistry can make biogeochemical knowledge more available to policymakers and educators about predicting future changes in the biosphere, ontimescales from seasons to centuries, in response to climate change andother anthropogenic impacts. Biogeochemistry also has a place infacilitating sustainable and equitable responses by society. 
    more » « less
  7. null (Ed.)
    Benthic animals profoundly influence the cycling and storage of carbon and other elements in marine systems, particularly in coastal sediments. Recent climate change has altered the distribution and abundance of many seafloor taxa and modified the vertical exchange of materials between ocean and sediment layers. Here, we examine how climate change could alter animal-mediated biogeochemical cycling in ocean sediments. The fossil record shows repeated major responses from the benthos during mass extinctions and global carbon perturbations, including reduced diversity, dominance of simple trace fossils, decreased burrow size and bioturbation intensity, and nonrandom extinction of trophic groups. The broad dispersal capacity of many extant benthic species facilitates poleward shifts corresponding to their environmental niche as overlying water warms. Evidence suggests that locally persistent populations will likely respond to environmental shifts through either failure to respond or genetic adaptation rather than via phenotypic plasticity. Regional and global ocean models insufficiently integrate changes in benthic biological activity and their feedbacks on sedimentary biogeochemical processes. The emergence of bioturbation, ventilation, and seafloor-habitat maps and progress in our mechanistic understanding of organism–sediment interactions enable incorporation of potential effects of climate change on benthic macrofaunal mediation of elemental cycles into regional and global ocean biogeochemical models. 
    more » « less
  8. null (Ed.)
    Keystone species have large ecological effects relative to their abundance and have been identified in many ecosystems. However, global change is pervasively altering environmental conditions, potentially elevating new species to keystone roles. Here, we reveal that a historically innocuous grazer—the marsh crab Sesarma reticulatum —is rapidly reshaping the geomorphic evolution and ecological organization of southeastern US salt marshes now burdened by rising sea levels. Our analyses indicate that sea-level rise in recent decades has widely outpaced marsh vertical accretion, increasing tidal submergence of marsh surfaces, particularly where creeks exhibit morphologies that are unable to efficiently drain adjacent marsh platforms. In these increasingly submerged areas, cordgrass decreases belowground root:rhizome ratios, causing substrate hardness to decrease to within the optimal range for Sesarma burrowing. Together, these bio-physical changes provoke Sesarma to aggregate in high-density grazing and burrowing fronts at the heads of tidal creeks (hereafter, creekheads). Aerial-image analyses reveal that resulting “ Sesarma- grazed” creekheads increased in prevalence from 10 ± 2% to 29 ± 5% over the past <25 y and, by tripling creek-incision rates relative to nongrazed creekheads, have increased marsh-landscape drainage density by 8 to 35% across the region. Field experiments further demonstrate that Sesarma- grazed creekheads, through their removal of vegetation that otherwise obstructs predator access, enhance the vulnerability of macrobenthic invertebrates to predation and strongly reduce secondary production across adjacent marsh platforms. Thus, sea-level rise is creating conditions within which Sesarma functions as a keystone species that is driving dynamic, landscape-scale changes in salt-marsh geomorphic evolution, spatial organization, and species interactions. 
    more » « less