skip to main content


Search for: All records

Creators/Authors contains: "Bidlack, Allison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    ABSTRACT Coastal margins are important areas of materials flux that link terrestrial and marine ecosystems. Consequently, climate-mediated changes to coastal terrestrial ecosystems and hydrologic regimes have high potential to influence nearshore ocean chemistry and food web dynamics. Research from tightly coupled, high-flux coastal ecosystems can advance understanding of terrestrial–marine links and climate sensitivities more generally. In the present article, we use the northeast Pacific coastal temperate rainforest as a model system to evaluate such links. We focus on key above- and belowground production and hydrological transport processes that control the land-to-ocean flow of materials and their influence on nearshore marine ecosystems. We evaluate how these connections may be altered by global climate change and we identify knowledge gaps in our understanding of the source, transport, and fate of terrestrial materials along this coastal margin. Finally, we propose five priority research themes in this region that are relevant for understanding coastal ecosystem links more broadly. 
    more » « less
  2. Abstract Glaciers have shaped past and present habitats for Pacific salmon (Oncorhynchus spp.) in North America. During the last glacial maximum, approximately 45% of the current North American range of Pacific salmon was covered in ice. Currently, most salmon habitat occurs in watersheds in which glacier ice is present and retreating. This synthesis examines the multiple ways that glacier retreat can influence aquatic ecosystems through the lens of Pacific salmon life cycles. We predict that the coming decades will result in areas in which salmon populations will be challenged by diminished water flows and elevated water temperatures, areas in which salmon productivity will be enhanced as downstream habitat suitability increases, and areas in which new river and lake habitat will be formed that can be colonized by anadromous salmon. Effective conservation and management of salmon habitat and populations should consider the impacts of glacier retreat and other sources of ecosystem change. 
    more » « less