skip to main content


Search for: All records

Creators/Authors contains: "Bierson, C. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recent results from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument have been interpreted as evidence of subsurface brine pooled beneath 1.3 km‐thick South Polar Layered Deposit (SPLD). This interpretation is based on the assumption that the regionally high strength of MARSIS radar reflections from the base of the ice cap is due to a strong contrast in dielectric permittivity across the basal interface. Here, we demonstrate that the high‐power reflections could instead be the result of a contrast in electric conductivity. While not explicitly excluding a liquid brine, our results open new potential explanations for the observed strong radar reflections, some of which do not require liquid brine beneath SPLD. Potential basal materials with suitably high conductivity include clays, metal‐bearing minerals, or saline ice.

     
    more » « less
  2. Abstract

    Venus is an exceptional natural experiment to test our understanding of atmospheric sulfur chemistry. Previous modeling efforts have focused on understanding either the middle or lower atmosphere. In this work, we performed the first full atmosphere analysis of the chemical transport processes on Venus from the surface to 110 km using a 1‐D diffusion model with photochemistry. We focused on the cycling of chemical species between the upper and lower atmospheres and interactions between distinct species groups including SO, CO + OCS, chlorides, NO, O, and S. We tested different eddy diffusivity profiles and investigated their influences on the vertical profiles of important species. We find that the assumed boundary conditions in previous models strongly impacted their simulation results. This has a particularly large effect for SO. We find the high SOabundance in the lower atmosphere is readily transported into the middle atmosphere, far exceeding observed values. This implies some yet unknown chemistry or process limiting SOmixing. We summarize outstanding questions raised by this work and note chemical reactions that should be the highest priority for future laboratory studies and ab initio calculations.

     
    more » « less
  3. Since January 2012, we have been monitoring the behavior of sulfur dioxide and water on Venus, using the Texas Echelon Cross-Echelle Spectrograph imaging spectrometer at the NASA InfraRed Telescope Facility (IRTF, Mauna Kea Observatory). Here, we present new data recorded in February and April 2019 in the 1345 cm −1 (7.4 μ m) spectral range, where SO 2 , CO 2 , and HDO (used as a proxy for H 2 O) transitions were observed. The cloud top of Venus was probed at an altitude of about 64 km. As in our previous studies, the volume mixing ratio (vmr) of SO 2 was estimated using the SO 2 /CO 2 line depth ratio of weak transitions; the H 2 O volume mixing ratio was derived from the HDO/CO 2 line depth ratio, assuming a D/H ratio of 200 times the Vienna standard mean ocean water. As reported in our previous analyses, the SO 2 mixing ratio shows strong variations with time and also over the disk, showing evidence for the formation of SO 2 plumes with a lifetime of a few hours; in contrast, the H 2 O abundance is remarkably uniform over the disk and shows moderate variations as a function of time. We have used the 2019 data in addition to our previous dataset to study the long-term variations of SO 2 and H 2 O. The data reveal a long-term anti-correlation with a correlation coefficient of −0.80; this coefficient becomes −0.90 if the analysis is restricted to the 2014–2019 time period. The statistical analysis of the SO 2 plumes as a function of local time confirms our previous result with a minimum around 10:00 and two maxima near the terminators. The dependence of the SO 2 vmr with respect to local time shows a higher abundance at the evening terminator with respect to the morning. The dependence of the SO 2 vmr with respect to longitude exhibits a broad maximum at 120–200° east longitudes, near the region of Aphrodite Terra. However, this trend has not been observed by other measurements and has yet to be confirmed. 
    more » « less