skip to main content


Search for: All records

Creators/Authors contains: "Bieryla, Allyson"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Post-common envelope binaries (PCEBs) containing a white dwarf (WD) and a main-sequence (MS) star can constrain the physics of common envelope evolution and calibrate binary evolution models. Most PCEBs studied to date have short orbital periods (Porb ≲ 1 d), implying relatively inefficient harnessing of binaries’ orbital energy for envelope expulsion. Here, we present follow-up observations of five binaries from 3rd data release of Gaia mission containing solar-type MS stars and probable ultramassive WDs ($M\gtrsim 1.2\ {\rm M}_{\odot}$) with significantly wider orbits than previously known PCEBs, Porb = 18–49 d. The WD masses are much higher than expected for systems formed via stable mass transfer at these periods, and their near-circular orbits suggest partial tidal circularization when the WD progenitors were giants. These properties strongly suggest that the binaries are PCEBs. Forming PCEBs at such wide separations requires highly efficient envelope ejection, and we find that the observed periods can only be explained if a significant fraction of the energy released when the envelope recombines goes into ejecting it. Our one-dimensional stellar models including recombination energy confirm prior predictions that a wide range of PCEB orbital periods, extending up to months or years, can potentially result from Roche lobe overflow of a luminous asymptotic giant branch (AGB) star. This evolutionary scenario may also explain the formation of several wide WD + MS binaries discovered via self-lensing, as well as a significant fraction of post-AGB binaries and barium stars.

     
    more » « less
  2. Abstract

    We present high-precision radial velocity observations of Gaia BH1, the nearest known black hole (BH). The system contains a solar-type G star orbiting a massive dark companion, which could be either a single BH or an inner BH + BH binary. A BH + BH binary is expected in some models where Gaia BH1 formed as a hierarchical triple, which is attractive because they avoid many of the difficulties associated with forming the system through isolated binary evolution. Our observations test the inner binary scenario. We have measured 115 precise RVs of the G star, including 40 from ESPRESSO with a precision of 3–5 m s−1, and 75 from other instruments with a typical precision of 30–100 m s−1. Our observations span 2.33 orbits of the G star and are concentrated near a periastron passage, when perturbations due to an inner binary would be largest. The RVs are well-fit by a Keplerian two-body orbit and show no convincing evidence of an inner binary. UsingREBOUNDsimulations of hierarchical triples with a range of inner periods, mass ratios, eccentricities, and orientations, we show that plausible inner binaries with periodsPinner≳ 1.5 days would have produced larger deviations from a Keplerian orbit than observed. Binaries withPinner≲ 1.5 days are consistent with the data, but these would merge within a Hubble time and would thus imply fine-tuning. We present updated parameters of Gaia BH1's orbit. The RVs yield a spectroscopic mass functionfMBH=3.9358±0.0002M—about 7000σabove the ∼2.5Mmaximum neutron star mass. Including the inclination constraint from Gaia astrometry, this implies a BH mass ofMBH= 9.27 ± 0.10M.

     
    more » « less
  3. Abstract

    We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak (MV≈ − 18.2 mag) and plateau (MV≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day−1. During the rising phase,UVcolor shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both theUVcolor and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 1014cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0Myr−1in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1Myr−1in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1Mof the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  4. Abstract

    While secondary mass inferences based on single-lined spectroscopic binary (SB1) solutions are subject tosinidegeneracies, this degeneracy can be lifted through the observations of eclipses. We combine the subset of Gaia Data Release 3 SB1 solutions consistent with brown dwarf-mass secondaries with the Transiting Exoplanet Survey Satellite (TESS) Object of Interest (TOI) list to identify three candidate transiting brown dwarf systems. Ground-based precision radial velocity follow-up observations confirm that TOI-2533.01 is a transiting brown dwarf withM=723+3MJup=0.0690.003+0.003Morbiting TYC 2010-124-1 and that TOI-5427.01 is a transiting very low-mass star withM=932+2MJup=0.0880.002+0.002Morbiting UCAC4 515-012898. We validate TOI-1712.01 as a very low-mass star withM=827+7MJup=0.0790.007+0.007Mtransiting the primary in the hierarchical triple system BD+45 1593. Even after accounting for third light, TOI-1712.01 has a radius nearly a factor of 2 larger than predicted for isolated stars with similar properties. We propose that the intense instellation experienced by TOI-1712.01 diminishes the temperature gradient near its surface, suppresses convection, and leads to its inflated radius. Our analyses verify Gaia DR3 SB1 solutions in the low Doppler semiamplitude limit, thereby providing the foundation for future joint analyses of Gaia radial velocities and Kepler, K2, TESS, and PLAnetary Transits and Oscillations light curves for the characterization of transiting massive brown dwarfs and very low-mass stars.

     
    more » « less
  5. Abstract

    We present and confirm TOI-1751 b, a transiting sub-Neptune orbiting a slightly evolved, solar-type, metal-poor star (Teff= 5996 ± 110 K,log(g)=4.2±0.1,V= 9.3 mag, [Fe/H] = −0.40 ± 0.06 dex) every 37.47 days. We use TESS photometry to measure a planet radius of2.770.07+0.15R. We also use both Keck/HIRES and APF/Levy radial velocities (RV) to derive a planet mass of14.53.14+3.15M, and thus a planet density of 3.6 ± 0.9 g cm−3. There is also a long-period (∼400 days) signal that is observed in only the Keck/HIRES data. We conclude that this long-period signal is not planetary in nature and is likely due to the window function of the Keck/HIRES observations. This highlights the role of complementary observations from multiple observatories to identify and exclude aliases in RV data. Finally, we investigate the potential compositions of this planet, including rocky and water-rich solutions, as well as theoretical irradiated ocean models. TOI-1751 b is a warm sub-Neptune with an equilibrium temperature of ∼820 K. As TOI-1751 is a metal-poor star, TOI-1751 b may have formed in a water-enriched formation environment. We thus favor a volatile-rich interior composition for this planet.

     
    more » « less
  6. ABSTRACT

    We present the confirmation of a hot super-Neptune with an exterior Neptune companion orbiting a bright (V  = 10.1 mag) F-dwarf identified by the Transiting Exoplanet Survey Satellite (TESS). The two planets, observed in sectors 45, 46, and 48 of the TESS extended mission, are $4.74_{-0.14}^{+0.16}$ and $3.86_{-0.16}^{+0.17}$ R⊕ with $5.4588385_{-0.0000072}^{+0.0000070}$ and $17.8999_{-0.0013}^{+0.0018}$ d orbital periods, respectively. We also obtained precise space-based photometric follow-up of the system with ESA’s CHaracterising ExOplanets Satellite to constrain the radius and ephemeris of TOI-5126 b. TOI-5126 b is located in the ‘hot Neptune Desert’ and is an ideal candidate for follow-up transmission spectroscopy due to its high-predicted equilibrium temperature (Teq = ${1442}_{-40}^{+46}$ K) implying a cloud-free atmosphere. TOI-5126 c is a warm Neptune (Teq = $971_{-27}^{+31}$ K) also suitable for follow-up. Tentative transit timing variations have also been identified in analysis, suggesting the presence of at least one additional planet, however this signal may be caused by spot-crossing events, necessitating further precise photometric follow-up to confirm these signals.

     
    more » « less
  7. Abstract

    We explore the fascinating eclipses and dynamics of the compact hierarchical triple-star system KOI-126 (KIC 5897826). This system is composed of a pair of M-dwarf stars (KOI-126 B and C) in a 1.74 day orbit that revolve around an F star (KOI-126 A) every 34 days. Complex eclipse shapes are created as the M stars transit the F star, due to two effects: (1) the duration of the eclipse is a significant fraction of the M-star orbital period, so the prograde or retrograde motion of the M stars in their orbit lead to unusually short or long duration eclipses; (2) due to 3-body dynamics, the M-star orbit precesses with an astonishingly quick timescale of 1.74 yr for the periastron (apsidal) precession, and 2.73 yr for the inclination and nodal angle precession. Using the full Kepler data set, supplemented with ground-based photometry, plus 29 radial velocity measurements that span 6 yr, our photodynamical modeling yields masses ofMA= 1.2713 ± 0.0047M(0.37%),MB= 0.23529 ± 0.00062M(0.26%), andMC= 0.20739 ± 0.00055M(0.27%) and radii ofRA= 1.9984 ± 0.0027R(0.14%),RB= 0.25504 ± 0.00076R(0.3%), andRC= 0.23196 ± 0.00069R(0.3%). We also estimate the apsidal motion constant of the M dwarfs, a parameter that characterizes the internal mass distribution. Although it is not particularly precise, we measure a mean apsidal motion constant,k2¯, of0.0460.028+0.046, which is approximately 2σlower than the theoretical model prediction of 0.150. We explore possible causes for this discrepancy.

     
    more » « less
  8. We report the confirmation and characterisation of TOI-1820 b, TOI-2025 b, and TOI-2158 b, three Jupiter-sized planets on short-period orbits around G-type stars detected by TESS. Through our ground-based efforts using the FIES and Tull spectrographs, we have confirmed these planets and characterised their orbits, and find periods of around 4.9 d, 8.9 d, and 8.6 d for TOI-1820 b, TOI-2025 b, and TOI-2158 b, respectively. The sizes of the planets range from 0.96 to 1.14 Jupiter radii, and their masses are in the range from 0.8 to 4.4 Jupiter masses. For two of the systems, namely TOI-2025 and TOI-2158, we see a long-term trend in the radial velocities, indicating the presence of an outer companion in each of the two systems. For TOI-2025 we furthermore find the star to be well aligned with the orbit, with a projected obliquity of 9 −31 +33 °. As these planets are all found in relatively bright systems ( V ~ 10.9–11.6 mag), they are well suited for further studies, which could help shed light on the formation and migration of hot and warm Jupiters. 
    more » « less
  9. Abstract

    We present high-precision radial velocities (RVs) from the HARPS-N spectrograph for HD 79210 and HD 79211, two M0V members of a gravitationally bound binary system. We detect a planet candidate with a period of24.4210.017+0.016days around HD 79211 in these HARPS-N RVs, validating the planet candidate originally identified in CARMENES RV data alone. Using HARPS-N, CARMENES, and RVs spanning a total of 25 yr, we further refine the planet candidate parameters toP= 24.422 ± 0.014 days,K= 3.19 ± 0.27 m s−1,Msini= 10.6 ± 1.2M, anda= 0.142 ± 0.005 au. We do not find any additional planet candidate signals in the data of HD 79211, nor do we find any planet candidate signals in HD 79210. This system adds to the number of exoplanets detected in binaries with M-dwarf members and serves as a case study for planet formation in stellar binaries.

     
    more » « less
  10. null (Ed.)