skip to main content


Search for: All records

Creators/Authors contains: "Bizyaev, Dmitry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present an analysis of nearly 1000 near-infrared, integrated-light spectra from APOGEE in the inner ∼7 kpc of M31. We utilize full-spectrum fitting with A-LIST simple stellar population spectral templates that represent a population of stars with the same age, [M/H], and [α/M]. With this, we determine the mean kinematics, metallicities,αabundances, and ages of the stellar populations of M31's bar, bulge, and inner disk (∼4–7 kpc). We find a nonaxisymmetric velocity field in M31 resulting from the presence of a bar. The bulge of M31 is less metal-rich (mean [M/H] =0.1490.081+0.067dex) than the disk, features minima in metallicity on either side of the bar ([M/H] ∼ −0.2), and is enhanced inαabundance (mean [α/M] =0.2810.038+0.035). The disk of M31 within ∼7 kpc is enhanced in both metallicity ([M/H] =0.0230.052+0.050) andαabundance ([α/M] =0.2740.025+0.020). Both of these structural components are uniformly old at ≃12 Gyr. We find the mean metallicity increases with distance from the center of M31, with the steepest gradient along the disk major axis (0.043 ± 0.021 dex kpc−1). This gradient is the result of changing light contributions from the bulge and disk. The chemodynamics of stellar populations encodes information about a galaxy’s chemical enrichment, star formation history, and merger history, allowing us to discuss new constraints on M31's formation. Our results provide a stepping stone between our understanding of the Milky Way and other external galaxies.

     
    more » « less
  2. Abstract We report the characterization of 28 low-mass (0.02 M ⊙ ≤ M 2 ≤ 0.25 M ⊙ ) companions to Kepler objects of interest (KOIs), eight of which were previously designated confirmed planets. These objects were detected as transiting companions to Sunlike stars (G and F dwarfs) by the Kepler mission and are confirmed as single-lined spectroscopic binaries in the current work using the northern multiplexed Apache Point Observatory Galactic Evolution Experiment near-infrared spectrograph (APOGEE-N) as part of the third and fourth Sloan Digital Sky Surveys. We have observed hundreds of KOIs using APOGEE-N and collected a total of 43,175 spectra with a median of 19 visits and a median baseline of ∼1.9 yr per target. We jointly model the Kepler photometry and APOGEE-N radial velocities to derive fundamental parameters for this subset of 28 transiting companions. The radii for most of these low-mass companions are overinflated (by ∼10%) when compared to theoretical models. Tidally locked M dwarfs on short-period orbits show the largest amount of inflation, but inflation is also evident for companions that are well separated from the host star. We demonstrate that APOGEE-N data provide reliable radial velocities when compared to precise high-resolution spectrographs that enable detailed characterization of individual systems and the inference of orbital elements for faint ( H > 12) KOIs. The data from the entire APOGEE-KOI program are public and present an opportunity to characterize an extensive subset of the binary population observed by Kepler. 
    more » « less
  3. Abstract We present a spectroscopic analysis of a sample of 48 M-dwarf stars (0.2 M ⊙ < M < 0.6 M ⊙ ) from the Hyades open cluster using high-resolution H -band spectra from the Sloan Digital Sky Survey/Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. Our methodology adopts spectrum synthesis with LTE MARCS model atmospheres, along with the APOGEE Data Release 17 line list, to determine effective temperatures, surface gravities, metallicities, and projected rotational velocities. The median metallicity obtained for the Hyades M dwarfs is [M/H] = 0.09 ± 0.03 dex, indicating a small internal uncertainty and good agreement with optical results for Hyades red giants. Overall, the median radii are larger than predicted by stellar models by 1.6% ± 2.3% and 2.4% ± 2.3%, relative to a MIST and DARTMOUTH isochrone, respectively. We emphasize, however, that these isochrones are different, and the fractional radius inflation for the fully and partially convective regimes have distinct behaviors depending on the isochrone. Using a MIST isochrone there is no evidence of radius inflation for the fully convective stars, while for the partially convective M dwarfs the radii are inflated by 2.7% ± 2.1%, which is in agreement with predictions from models that include magnetic fields. For the partially convective stars, rapid rotators present on average higher inflation levels than slow rotators. The comparison with SPOTS isochrone models indicates that the derived M-dwarf radii can be explained by accounting for stellar spots in the photosphere of the stars, with 76% of the studied M dwarfs having up to 20% spot coverage, and the most inflated stars with ∼20%–40% spot coverage. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. ABSTRACT

    Red geysers are a specific type of quiescent galaxy, denoted by twin jets emerging from their galactic centres. These bisymmetric jets possibly inject energy and heat into the surrounding material, effectively suppressing star formation by stabilizing cool gas. In order to confirm the presence and evolutionary consequences of these jets, this paper discusses the scaling, stacking, and conversion of 21-cm H i flux data sourced from the H i-MaNGA survey into H i gas-to-stellar mass (G/S) spectra. Our samples were dominated by non-detections, or galaxies with weak H i signals, and consequently by H i upper limits. The stacking technique discussed successfully resolved emission features in both the red geyser G/S spectrum and the control sample G/S spectrum. From these stacked spectra, we find that on average, red geyser galaxies have G/S of 0.086 ± 0.011 (random) + 0.029 (systematic), while non-red geyser galaxies of similar stellar mass have a G/S ratio of 0.039 ± 0.018 (random) + 0.013 (systematic). Therefore, we find no statistically significant evidence that the H i content of red geysers is different from the general quiescent population.

     
    more » « less
  5. ABSTRACT

    Counter-rotating components in galaxies are one of the most direct forms of evidence for past gas accretion or merging. We discovered 10 edge-on disc gaseous counter-rotators in a sample of 523 edge-on galaxies identified in the final MaNGA (Mapping Nearby Galaxies at APO) IFU sample. The counter-rotators tend to located in small groups. The gaseous counter-rotators have intermediate stellar masses and and located in the green valley and red sequence of the colour–magnitude diagram. The average vertical extents of the stellar and ionized gas discs are the same as for the rest of the sample while their radial gas and stellar distributions are more centrally concentrated. This may point at angular momentum loss during the formation process of the counter-rotating discs. The counter-rotators have low gas and dust content, weak emission-line strengths, and low star formation rates. This suggests that the formation of counter-rotators may be an efficient way to quench galaxies. One counter-rotator, SDSS J080016.09+292817.1 (Galaxy F), has a post-starburst region and a possible AGN at the centre. Another counter-rotator, SDSS J131234.03+482159.8 (Galaxy H), is identified as a potential ongoing galaxy interaction with its companion satellite galaxy, a gas-rich spiral galaxy. This may be representative case of a gaseous counter-rotator forming through a merger origin. However, tidal distortions expected in mergers are only found in a few of the galaxies and we cannot rule out direct gas accretion as another formation mechanism.

     
    more » « less
  6. ABSTRACT

    We consider the largest sample of 561 edge-on galaxies observed with integral field units by the MaNGA survey and find 300 galaxies where the ionized gas shows a negative vertical gradient (lag) in its rotational speed. We introduce the stop altitude as the distance to the galactic mid-plane at which the gas rotation should stop in the linear approximation. We find correlations between the lags, stop altitude and galactic mass, stellar velocity dispersion, and overall Sersic index. We do not find any correlation of the lags or stop altitude with the star formation activity in the galaxies. We conclude that low-mass galaxies (log(M*/M⊙) < 10) with low-Sersic index and with low-stellar velocity dispersion possess a wider ‘zone of influence’ in the extragalactic gas surrounding them with respect to higher mass galaxies that have a significant spherical component. We estimated the trend of the vertical rotational gradient with radius and find it flat for most of the galaxies in our sample. A small subsample of galaxies with negative radial gradients of lag has an enhanced fraction of objects with aged low-surface brightness structures around them (e.g. faint shells), which indicates that noticeable accretion events in the past affected the extraplanar gas kinematics and might have contributed to negative radial lag gradients. We conclude that an isotropic accretion of gas from the circumgalactic medium plays a significant role in the formation of rotation velocity lags.

     
    more » « less
  7. Abstract

    Stars that formed with an initial mass of over 50Mare very rare today, but they are thought to be more common in the early Universe. The fates of those early, metal-poor, massive stars are highly uncertain. Most are expected to directly collapse to black holes, while some may explode as a result of rotationally powered engines or the pair-creation instability. We present the chemical abundances of J0931+0038, a nearby low-mass star identified in early follow-up of the SDSS-V Milky Way Mapper, which preserves the signature of unusual nucleosynthesis from a massive star in the early Universe. J0931+0038 has a relatively high metallicity ([Fe/H] = −1.76 ± 0.13) but an extreme odd–even abundance pattern, with some of the lowest known abundance ratios of [N/Fe], [Na/Fe], [K/Fe], [Sc/Fe], and [Ba/Fe]. The implication is that a majority of its metals originated in a single extremely metal-poor nucleosynthetic source. An extensive search through nucleosynthesis predictions finds a clear preference for progenitors with initial mass >50M, making J0931+0038 one of the first observational constraints on nucleosynthesis in this mass range. However, the full abundance pattern is not matched by any models in the literature. J0931+0038 thus presents a challenge for the next generation of nucleosynthesis models and motivates the study of high-mass progenitor stars impacted by convection, rotation, jets, and/or binary companions. Though rare, more examples of unusual early nucleosynthesis in metal-poor stars should be found in upcoming large spectroscopic surveys.

     
    more » « less
  8. ABSTRACT

    We calculate the α-enhancement ratio [α/Fe] for the Mapping Nearby Galaxies at APO (MaNGA) Stellar Library (MaStar) while also fitting for the fundamental atmospheric parameters effective temperature, surface gravity, and metallicity – Teff, log g, [Fe/H]. This approach builds upon a previous catalogue of stellar parameters, whereby only the fundamental atmospheric parameters are fit with solar-scaled models. Here, we use the same Markov Chain Monte Carlo method with the additional free parameter [α/Fe]. Using the full spectral fitting code pPXF, we are able to fit multiple lines sensitive to [α/Fe] for a more robust measurement. Quality flags based on the convergence of the sampler, errors in [α/Fe] and a cut in the χ2 of the model fit are used to clean the final catalogue, returning 17 214 spectra and values in the range of −0.25 < [α/Fe] < 0.48. Comparing our calculated [α/Fe] with literature values reveals a degeneracy in cool stars with log g ≥ ∼4; this comparison is then used to create an alternative and calibrated parameter set. We also plot the final catalogue in an [Fe/H] versus [α/Fe] diagram and recover the expected result of increasing [α/Fe] with decreasing [Fe/H] for Milky Way disc-halo stars. We apply our method to a subsample of spectra of uniform resolution and higher signal to noise that finds that our results are independent of this higher signal to noise. In the context of stellar population models, we are able to cover a parameter space for the creation of intermediate to old age models at solar-scaled [α/Fe], high [Fe/H] and enhanced [α/Fe], low [Fe/H].

     
    more » « less
  9. Abstract

    We present new maps of the Milky Way disk showing the distribution of metallicity ([Fe/H]),α-element abundances ([Mg/Fe]), and stellar age, using a sample of 66,496 red giant stars from the final data release (DR17) of the Apache Point Observatory Galactic Evolution Experiment survey. We measure radial and vertical gradients, quantify the distribution functions for age and metallicity, and explore chemical clock relations across the Milky Way for the low-αdisk, high-αdisk, and total population independently. The low-αdisk exhibits a negative radial metallicity gradient of −0.06 ± 0.001 dex kpc−1, which flattens with distance from the midplane. The high-αdisk shows a flat radial gradient in metallicity and age across nearly all locations of the disk. The age and metallicity distribution functions shift from negatively skewed in the inner Galaxy to positively skewed at large radius. Significant bimodality in the [Mg/Fe]–[Fe/H] plane and in the [Mg/Fe]–age relation persist across the entire disk. The age estimates have typical uncertainties of ∼0.15 in log(age) and may be subject to additional systematic errors, which impose limitations on conclusions drawn from this sample. Nevertheless, these results act as critical constraints on galactic evolution models, constraining which physical processes played a dominant role in the formation of the Milky Way disk. We discuss how radial migration predicts many of the observed trends near the solar neighborhood and in the outer disk, but an additional more dramatic evolution history, such as the multi-infall model or a merger event, is needed to explain the chemical and age bimodality elsewhere in the Galaxy.

     
    more » « less
  10. Abstract

    The Sloan Digital Sky Survey MaNGA program has now obtained integral field spectroscopy for over 10,000 galaxies in the nearby universe. We use the final MaNGA data release DR17 to study the correlation between ionized gas velocity dispersion and galactic star formation rate, finding a tight correlation in whichσHαfrom galactic Hiiregions increases significantly from ∼18–30 km s−1, broadly in keeping with previous studies. In contrast,σHαfrom diffuse ionized gas increases more rapidly from 20–60 km s−1. Using the statistical power of MaNGA, we investigate these correlations in greater detail using multiple emission lines and determine that the observed correlation ofσHαwith local star formation rate surface density is driven primarily by the global relation of increasing velocity dispersion at higher total star formation rate, as are apparent correlations with stellar mass. Assuming Hiiregion models consistent with our finding thatσ[OIII]<σHα<σ[O I], we estimate the velocity dispersion of the molecular gas in which the individual Hiiregions are embedded, finding valuesσMol= 5–30 km s−1consistent with ALMA observations in a similar mass range. Finally, we use variations in the relation with inclination and disk azimuthal angle to constrain the velocity dispersion ellipsoid of the ionized gasσz/σr= 0.84 ± 0.03 andσϕ/σr= 0.91 ± 0.03, similar to that of young stars in the Galactic disk. Our results are most consistent with the theoretical models in which turbulence in modern galactic disks is driven primarily by star formation feedback.

     
    more » « less