skip to main content


Search for: All records

Creators/Authors contains: "Blair, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The opposing forces of gene flow and isolation are two major processes shaping genetic diversity. Understanding how these vary across space and time is necessary to identify the environmental features that promote diversification. The detection of considerable geographic structure in taxa from the arid Nearctic has prompted research into the drivers of isolation in the region. Several geographic features have been proposed as barriers to gene flow, including the Colorado River, Western Continental Divide (WCD), and a hypothetical Mid-Peninsular Seaway in Baja California. However, recent studies suggest that the role of barriers in genetic differentiation may have been overestimated when compared to other mechanisms of divergence. In this study, we infer historical and spatial patterns of connectivity and isolation in Desert Spiny Lizards (Sceloporus magister) and Baja Spiny Lizards (Sceloporus zosteromus), which together form a species complex composed of parapatric lineages with wide distributions in arid western North America. Our analyses incorporate mitochondrial sequences, genomic-scale data, and past and present climatic data to evaluate the nature and strength of barriers to gene flow in the region. Our approach relies on estimates of migration under the multispecies coalescent to understand the history of lineage divergence in the face of gene flow. Results show that the S. magister complex is geographically structured, but we also detect instances of gene flow. The WCD is a strong barrier to gene flow, while the Colorado River is more permeable. Analyses yield conflicting results for the catalyst of differentiation of peninsular lineages in S. zosteromus. Our study shows how large-scale genomic data for thoroughly sampled species can shed new light on biogeography. Furthermore, our approach highlights the need for the combined analysis of multiple sources of evidence to adequately characterize the drivers of divergence.

     
    more » « less
  2. Abstract

    The genomics revolution continues to change how ecologists and evolutionary biologists study the evolution and maintenance of biodiversity. It is now easier than ever to generate large molecular data sets consisting of hundreds to thousands of independently evolving nuclear loci to estimate a suite of evolutionary and demographic parameters. However, any inferences will be incomplete or inaccurate if incorrect taxonomic identities and perpetuated throughout the analytical pipeline. Due to decades of research and comprehensive online databases, sequencing and analysis of mitochondrial DNA (mtDNA), chloroplast DNA (cpDNA) and select nuclear genes can provide researchers with a cost effective and simple means to verify the species identity of samples prior to subsequent phylogeographic and population genomic analysis. The addition of these sequences to genomic studies can also shed light on other important evolutionary questions such as explanations for gene tree‐species tree discordance, species limits, sex‐biased dispersal patterns, adaptation, and mtDNA introgression. Although the mtDNA and cpDNA genomes often should not be used exclusively to make historical inferences given their well‐known limitations, the addition of these data to modern genomic studies adds little cost and effort while simultaneously providing a wealth of useful data that can have significant implications for both basic and applied research.

     
    more » « less
  3. Baldauf, Sandra (Ed.)
    Abstract The southwestern and central United States serve as an ideal region to test alternative hypotheses regarding biotic diversification. Genomic data can now be combined with sophisticated computational models to quantify the impacts of paleoclimate change, geographic features, and habitat heterogeneity on spatial patterns of genetic diversity. In this study, we combine thousands of genotyping-by-sequencing (GBS) loci with mtDNA sequences (ND1) from the Texas horned lizard (Phrynosoma cornutum) to quantify relative support for different catalysts of diversification. Phylogenetic and clustering analyses of the GBS data indicate support for at least three primary populations. The spatial distribution of populations appears concordant with habitat type, with desert populations in AZ and NM showing the largest genetic divergence from the remaining populations. The mtDNA data also support a divergent desert population, but other relationships differ and suggest mtDNA introgression. Genotype–environment association with bioclimatic variables supports divergence along precipitation gradients more than along temperature gradients. Demographic analyses support a complex history, with introgression and gene flow playing an important role during diversification. Bayesian multispecies coalescent analyses with introgression (MSci) analyses also suggest that gene flow occurred between populations. Paleo-species distribution models support two southern refugia that geographically correspond to contemporary lineages. We find that divergence times are underestimated and population sizes are overestimated when introgression occurred and is ignored in coalescent analyses, and furthermore, inference of ancient introgression events and demographic history is sensitive to inclusion of a single recently admixed sample. Our analyses cannot refute the riverine barrier or glacial refugia hypotheses. Results also suggest that populations are continuing to diverge along habitat gradients. Finally, the strong evidence of admixture, gene flow, and mtDNA introgression among populations suggests that P. cornutum should be considered a single widespread species under the General Lineage Species Concept. 
    more » « less
  4. Abstract

    Genomic data continue to advance our understanding of species limits and biogeographic patterns. However, there is still no consensus regarding appropriate methods of phylogenomic analysis that make the best use of these heterogeneous data sets. In this study, we used thousands of ultraconserved element (UCE) loci from alligator lizards in the genus Gerrhonotus to compare and contrast species trees inferred using multiple contemporary methods and provide a time frame for biological diversification across the Mexican Transition Zone (MTZ). Concatenated maximum likelihood (ML) and Bayesian analyses provided highly congruent results, with differences limited to poorly supported nodes. Similar topologies were inferred from coalescent analyses in Bayesian Phylogenetics and Phylogeography and SVDquartets, albeit with lower support for some nodes. All divergence times fell within the Miocene, linking speciation to local Neogene vicariance and/or global cooling trends following the mid-Miocene Climatic Optimum. We detected a high level of genomic divergence for a morphologically distinct species restricted to the arid mountains of north-eastern Mexico, and erected a new genus to better reflect evolutionary history. In summary, our results further advocate leveraging the strengths and weaknesses of concatenation and coalescent methods, provide evidence for old divergences for alligator lizards, and indicate that the MTZ continues to harbour substantial unrecognized diversity.

     
    more » « less
  5. Abstract

    Species often experience spatial environmental heterogeneity across their range, and populations may exhibit signatures of adaptation to local environmental characteristics. Other population genetic processes, such as migration and genetic drift, can impede the effects of local adaptation. Genetic drift in particular can have a pronounced effect on population genetic structure during large‐scale geographic expansions, where a series of founder effects leads to decreases in genetic variation in the direction of the expansion. Here, we explore the genetic diversity of a desert lizard that occupies a wide range of environmental conditions and that has experienced post‐glacial expansion northwards along two colonization routes. Based on our analyses of a large SNP data set, we find evidence that both climate and demographic history have shaped the genetic structure of populations. Pronounced genetic differentiation was evident between populations occupying cold versus hot deserts, and we detected numerous loci with significant associations with climate. The genetic signal of founder effects, however, is still present in the genomes of the recently expanded populations, which comprise subsets of genetic variation found in the southern populations.

     
    more » « less
  6. Abstract

    With the continued adoption of genome‐scale data in evolutionary biology comes the challenge of adequately harnessing the information to make accurate phylogenetic inferences. Coalescent‐based methods of species tree inference have become common, and concatenation has been shown in simulation to perform well, particularly when levels of incomplete lineage sorting are low. However, simulation conditions are often overly simplistic, leaving empiricists with uncertainty regarding analytical tools. We use a large ultraconserved element data set (>3,000 loci) from rattlesnakes of theCrotalus triseriatusgroup to delimit lineages and estimate species trees using concatenation and several coalescent‐based methods. Unpartitioned and partitioned maximum likelihood and Bayesian analysis of the concatenated matrix yield a topology identical to coalescent analysis of a subset of the data inbpp. ASTRAL analysis on a subset of the more variable loci also results in a tree consistent with concatenation andbpp, whereas theSVDquartetsphylogeny differs at additional nodes. The size of the concatenated matrix has a strong effect on species tree inference usingSVDquartets, warranting additional investigation on optimal data characteristics for this method. Species delimitation analyses suggest up to 16 unique lineages may be present within theC. triseriatusgroup, with divergences occurring during the Neogene and Quaternary. Network analyses suggest hybridization within the group is relatively rare. Altogether, our results reaffirm the Mexican highlands as a biodiversity hotspot and suggest that coalescent‐based species tree inference on data subsets can provide a strongly supported species tree consistent with concatenation of all loci with a large amount of missing data.

     
    more » « less