skip to main content


Search for: All records

Creators/Authors contains: "Bloch, I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The field of dark matter detection is a highly visible and highly competitive one. In this paper, we propose recommendations for presenting dark matter direct detection results particularly suited for weak-scale dark matter searches, although we believe the spirit of the recommendations can apply more broadly to searches for other dark matter candidates, such as very light dark matter or axions. To translate experimental data into a final published result, direct detection collaborations must make a series of choices in their analysis, ranging from how to model astrophysical parameters to how to make statistical inferences based on observed data. While many collaborations follow a standard set of recommendations in some areas, for example the expected flux of dark matter particles (to a large degree based on a paper from Lewin and Smith in 1995), in other areas, particularly in statistical inference, they have taken different approaches, often from result to result by the same collaboration. We set out a number of recommendations on how to apply the now commonly used Profile Likelihood Ratio method to direct detection data. In addition, updated recommendations for the Standard Halo Model astrophysical parameters and relevant neutrino fluxes are provided. The authors of this note include members of the DAMIC, DarkSide, DARWIN, DEAP, LZ, NEWS-G, PandaX, PICO, SBC, SENSEI, SuperCDMS, and XENON collaborations, and these collaborations provided input to the recommendations laid out here. Wide-spread adoption of these recommendations will make it easier to compare and combine future dark matter results. 
    more » « less
  2. A<sc>bstract</sc>

    A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb1of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of theWZ+ jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Free, publicly-accessible full text available January 1, 2025
  4. A<sc>bstract</sc>

    A search for supersymmetry targeting the direct production of winos and higgsinos is conducted in final states with either two leptons (eorμ) with the same electric charge, or three leptons. The analysis uses 139 fb1ofppcollision data at$$ \sqrt{s} $$s= 13 TeV collected with the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess over the Standard Model expectation is observed. Simplified and complete models with and withoutR-parity conservation are considered. In topologies with intermediate states including eitherWhorWZpairs, wino masses up to 525 GeV and 250 GeV are excluded, respectively, for a bino of vanishing mass. Higgsino masses smaller than 440 GeV are excluded in a naturalR-parity-violating model with bilinear terms. Upper limits on the production cross section of generic events beyond the Standard Model as low as 40 ab are obtained in signal regions optimised for these models and also for anR-parity-violating scenario with baryon-number-violating higgsino decays into top quarks and jets. The analysis significantly improves sensitivity to supersymmetric models and other processes beyond the Standard Model that may contribute to the considered final states.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  5. Search for a new pseudoscalar a-boson decaying to muons in events with additional top quark pairs. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  6. A<sc>bstract</sc>

    A search for dark matter produced in association with a Higgs boson in final states with two hadronically decayingτ-leptons and missing transverse momentum is presented. The analysis uses 139 fb1of proton-proton collision data at$$ \sqrt{s} $$s= 13 TeV collected by the ATLAS experiment at the Large Hadron Collider between 2015 and 2018. No evidence of physics beyond the Standard Model is found. The results are interpreted in terms of a 2HDM+amodel featuring two scalar Higgs doublets and a pseudoscalar singlet field. Exclusion limits on the parameters of the model in selected benchmark scenarios are derived at 95% confidence level. Model-independent limits are also set on the visible cross-section for processes beyond the Standard Model producing missing transverse momentum in association with a Higgs boson decaying intoτ-leptons.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024