skip to main content


Search for: All records

Creators/Authors contains: "Bonito, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Galactic science encompasses a wide range of subjects in the study of the Milky Way and Magellanic Clouds, from young stellar objects to X-ray binaries. Mapping these populations, and exploring transient phenomena within them, are among the primary science goals of the Vera C. Rubin Observatory’s Legacy Survey of Space and Time. While early versions of the survey strategy dedicated relatively few visits to the Galactic Plane region, more recent strategies under consideration envision a higher cadence within selected regions of high scientific interest. The range of galactic science presents a challenge in evaluating which strategies deliver the highest scientific returns. Here we present metrics designed to evaluate Rubin survey strategy simulations, based on the cadence of observations they deliver within regions of interest to different topics in galactic science, using variability categories defined by timescale. We also compare the fractions of exposures obtained in each filter with those recommended for the different science goals. We find that the baseline _ v2.x simulations deliver observations of the high-priority regions at sufficiently high cadence to reliably detect variability on timescales >10 days or more. Follow-up observations may be necessary to properly characterize variability, especially transients, on shorter timescales. Combining the regions of interest for all the science cases considered, we identify those areas of the Galactic Plane and Magellanic Clouds of highest priority. We recommend that these refined survey footprints be used in future simulations to explore rolling cadence scenarios, and to optimize the sequence of observations in different bandpasses. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Context. The equatorial accretion scenario, caused by the development of the Rayleigh-Taylor (RT) instability at the disk edge, was suggested by accurate three-dimensional magnetohydrodynamic (MHD) modelling, but no observational or experimental confirmation of such phenomena has been evidenced yet. Aims. We studied the propagation of a laterally extended laser-generated plasma stream across a magnetic field and investigated if this kind of structure can be scaled to the case of equatorial ‘tongue’ accretion channels in young stellar objects (YSOs); if so, this would support the possibility of equatorial accretion in young accreting stars. Methods. We conducted a scaled laboratory experiment at the PEARL laser facility. The experiment consists in an optical laser pulse that is focused onto the surface of a Teflon target. The irradiation of the target leads to the expansion of a hot plasma stream into the vacuum, perpendicularly to an externally applied magnetic field. We used a Mach-Zehnder interferometer to diagnose the plasma stream propagation along two axes, to obtain the three-dimensional distribution of the plasma stream. Results. The laboratory experiment shows the propagation of a laterally extended laser-generated plasma stream across a magnetic field. We demonstrate that: (i) such a stream is subject to the development of the RT instability, and (ii) the stream, decomposed into tongues, is able to efficiently propagate perpendicular to the magnetic field. Based on numerical simulations, we show that the origin of the development of the instability in the laboratory is similar to that observed in MHD models of equatorial tongue accretion in YSOs. Conclusions. As we verify that the laboratory plasma scales favourably to accretion inflows of YSOs, our laboratory results support the argument in favour of the possibility of the RT-instability-caused equatorial tongue accretion scenario in the astrophysical case. 
    more » « less