skip to main content


Search for: All records

Creators/Authors contains: "Bou���Zeid, Elie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 21, 2024
  2. Abstract

    Particularly challenging classes of heterogeneous surfaces are ones where strong secondary circulations are generated, potentially dominating the flow dynamics. In this study, we focus on land–sea breeze (LSB) circulations resulting from surface thermal contrasts, in the presence of increasing synoptic pressure forcing. The relative importance and orientation of the thermal and synoptic forcings are measured through two dimensionless parameters: a heterogeneity Richardson number (measuring the relative strength of geostrophic wind and convection induced by buoyancy), and the angleαbetween the shore and geostrophic wind. Large‐eddy simulations reveal the emergence of various regimes where the dynamics are asymmetric with respect toα. Along‐shore cases result in deep LSBs similar to the scenario with no synoptic background, irrespective of the geostrophic wind strength. Across‐shore simulations exhibit a circulation cell that decreases in height with increasing synoptic forcing. However, at the highest synoptic winds simulated, the circulation cell is advected away with sea‐to‐land winds, while a shallow circulation persists for land‐to‐sea cases. Scaling analysis that relates the internal parametersQshore(net shore volumetric flux) andqshore(net shore advected kinematic heat flux) to the external input parameters results in a succinct model of the shore fluxes that also helps explain the physical implications of the identified LSBs. Finally, the vertical profiles of the shore‐normal velocity and shore‐advected heat flux are used, with the aid ofk‐means clustering, to independently classify the LSBs into four regimes (canonical, sea‐driven, land‐driven, and advected), corroborating our visual categorization.

     
    more » « less
  3. Abstract

    The Monin‐Obukhov Similarity Theory (MOST) links turbulent statistics to surface fluxes through universal functions. Here, we investigate its performance over a large lake, where none of its assumptions (flat homogeneous surface) are obviously violated. We probe the connection between the variance budget terms and departure from the nondimensional flux‐variance function for CO2, water vapor, and temperature. Our results indicate that both the variance storage and its vertical transport affect MOST, and these terms are most significant when small fluxes and near neutral conditions were prevalent. Such conditions are common over lakes and oceans, especially for CO2, underlining the limitation of using any MOST‐based methods to compute small fluxes. We further show that the relaxed eddy accumulation (REA) method is more robust and less sensitive to storage and transport, adequately reproducing the eddy‐covariance fluxes even for the smallest flux magnitudes. Therefore, we recommend REA over MOST methods for trace‐gas flux estimation.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. Large-scale circulations around a city are co-modulated by the urban heat island and by regional wind patterns. Depending on these variables, the circulations fall into different regimes ranging from advection-dominated (plume regime) to convection-driven (bubble regime). Using dimensional analysis and large-eddy simulations, this study investigates how these different circulations scale with urban and rural heat fluxes, as well as upstream wind speed. Two dimensionless parameters are shown to control the dynamics of the flow: (1) the ratio of rural to urban thermal convective velocities that contrasts their respective buoyancy fluxes and (2) the ratio of bulk inflow velocity to the convection velocity in the rural area. Finally, the vertical flow velocities transecting the rural to urban transitions are used to develop a criterion for categorizing different large-scale circulations into plume, bubble or transitional regimes. The findings have implications for city ventilation since bubble regimes are expected to trap pollutants, as well as for scaling analysis in canonical mixed-convection flows. 
    more » « less