skip to main content


Search for: All records

Creators/Authors contains: "Bousquet, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Abstract Multiferroics are materials exhibiting the coexistence of ferroelectricity and ideally ferromagnetism. Unfortunately, most known magnetoelectric multiferroics combine ferroelectricity with antiferromagnetism or with weak ferromagnetism. Here, following previous theoretical predictions, we provide clear experimental indications that ferroelectricity can be induced by epitaxial tensile strain in the ferromagnetic simple binary oxide EuO. We investigate the ferroelectric phase transition using infrared reflectance spectroscopy, finding that the frequency of the soft optical phonon reduces with increasing tensile strain and decreasing temperature. We observe such a soft mode anomaly at 100 K in (EuO) 2 /(BaO) 2 superlattices grown epitaxially on (LaAlO 3 ) 0.29 -(SrAl 1/2 Ta 1/2 O 3 ) 0.71 substrates, which is a typical signature for a displacive ferroelectric phase transition. The EuO in this superlattice is nominally subjected to 6.4% biaxial tensile strain, i.e., 50% more than believed needed from previously published calculations. We interpret our results with new first-principles density functional calculations using a hybrid functional, which provides a better quantitative agreement with experiment than the previously used local-density approximation and generalized gradient approximation functionals. 
    more » « less
  3. We present the use and implementation of the firefly algorithm to help in scanning the multiple metastable minima of orbital occupations in density functional theory (DFT) plus Hubbard U correction and to identify the ground state occupations in strongly correlated materials. We show the application of this implementation with the Abinit code on KCoF 3 and UO 2 crystals, which are typical d and f electron systems with numerous occupation minima. We demonstrate the validity and performance of the method by comparing with previous methodologies. The method is general and can be applied to any code using constrained occupation matrices. 
    more » « less
  4. Abstract

    Multiferroics are a unique class of materials where magnetic and ferroelectric orders coexist. The research on multiferroics contributes significantly to the fundamental understanding of the strong correlations between different material degrees of freedom and provides an energy‐efficient route toward the electrical control of magnetism. While multiple ABO3oxide perovskites are identified as being multiferroic, their magnetoelectric coupling strength is often weak, necessitating the material search in different compounds. Here, the observation of room‐temperature multiferroic orders in multi‐anion SrNbO3−xNxthin films is reported. In these samples, the multi‐anion state enables the room‐temperature ferromagnetic ordering of the Nb d‐electrons. Simultaneously, ferroelectric responses that originate from the structural symmetry breaking associated are found with both the off‐center displacements of Nb and the geometric displacements of Sr, depending on the relative O‐N arrangements within the Nb‐centered octahedra. The findings not only diversify the available multiferroic material pool but also demonstrate a new multiferroism design strategy via multi‐anion engineering.

     
    more » « less