skip to main content


Search for: All records

Creators/Authors contains: "Bowles, Timothy M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Non-crop vegetation, such as hedgerows and cover crops, are important on-farm diversification practices that support biodiversity and ecosystem services; however, information about their rates and patterns of adoption are scarce. We used satellite and aerial imagery coupled with machine learning classification to map the use of hedgerows/windbreaks and winter cover crops in California's Central Coast, a globally important agricultural area of intensive fresh produce production. We expected that adoption of both practices would be relatively low and unevenly distributed across the landscape, with higher levels of adoption found in marginal farmland and in less intensively cultivated areas where the pressure to remove non-crop vegetation may be lower. Our remote sensing classification revealed that only ~6% of farmland had winter cover crops in 2021 and 0.26% of farmland had hedgerows or windbreaks in 2018. Thirty-seven percent of ranch parcels had cover crops on at least 5% of the ranch while 22% of ranches had at least one hedgerow/windbreak. Nearly 16% of farmland had other annual winter crops, some of which could provide services similar to cover crops; however, 60% of farmland had bare soil over the winter study period, with the remainder of farmland classified as perennial crops or strawberries. Hotspot analysis showed significant areas of adoption of both practices in the hillier regions of all counties. Finally, qualitative interviews revealed that adoption patterns were likely driven by interrelated effects of topography, land values, and farming models, with organic, diversified farms implementing these practices in less ideal, lower-value farmland. This study demonstrates how remote sensing coupled with qualitative research can be used to map and interpret patterns of important diversification practices, with implications for tracking policy interventions and targeting resources to assist farmers motivated to expand adoption. 
    more » « less
  2. As blue water resources become increasingly scarce with more frequent droughts and overuse, irrigated agriculture faces significant challenges to reduce its water footprint while maintaining high levels of crop production. Building soil health has been touted as an important means of enhancing the resilience of agroecosystems to drought, mainly with a focus in rainfed systems reliant on green water through increases in infiltration and soil water storage. Yet, green water often contributes only a small fraction of the total crop water budget in irrigated agricultural regions. To scope the potential for how soil health management could impact water resources in irrigated systems, we review how soil health affects soil water flows, plant–soil–microbe interactions, and plant water capture and productive use. We assess how these effects could interact with irrigation management to help make green and blue water use more sustainable. We show how soil health management could (1) optimize green water availability (e.g., by increasing infiltration and soil water storage), (2) maximize productive water flows (e.g., by reducing evaporation and supporting crop growth), and (3) reduce blue water withdrawals (e.g., by minimizing the impacts of water stress on crop productivity). Quantifying the potential of soil health to improve water resource management will require research that focuses on outcomes for green and blue water provisioning and crop production under different irrigation and crop management strategies. Such information could be used to improve and parameterize finer scale crop, soil, and hydraulic models, which in turn must be linked with larger scale hydrologic models to address critical water-resources management questions at watershed or regional scales. While integrated soil health-water management strategies have considerable potential to conserve water—especially compared to irrigation technologies that enhance field-level water use efficiency but often increase regional water use—transitions to these strategies will depend on more than technical understanding and must include addressing interrelated structural and institutional barriers. By scoping a range of ways enhancing soil health could improve resilience to water limitations and identifying key research directions, we inform research and policy priorities aimed at adapting irrigated agriculture to an increasingly challenging future. 
    more » « less
  3. Abstract Climate change adaptation requires building agricultural system resilience to warmer, drier climates. Increasing temporal plant diversity through crop rotation diversification increases yields of some crops under drought, but its potential to enhance crop drought resistance and the underlying mechanisms remain unclear. We conducted a drought manipulation experiment using rainout shelters embedded within a 36-year crop rotation diversity and no-till experiment in a temperate climate and measured a suite of soil and crop developmental and eco-physiological traits in the field and laboratory. We show that diversifying maize-soybean rotations with small grain cereals and cover crops mitigated maize water stress at the leaf and canopy scales and reduced yield losses to drought by 17.1 ± 6.1%, while no-till did not affect maize drought resistance. Path analysis showed a strong correlation between soil organic matter and lower maize water stress despite no significant differences in soil organic matter between rotations or tillage treatments. This positive relationship between soil organic matter and maize water status was not mediated by higher soil water retention or infiltration as often hypothesized, nor differential depth of root water uptake as measured with stable isotopes, suggesting that other mechanisms are at play. Crop rotation diversification is an underappreciated drought management tool to adapt crop production to climate change through managing for soil organic matter. 
    more » « less
  4. In the past few decades, farmers and researchers have firmly established that biologically diversified farming systems improve ecosystem services both on and off the farm, producing economic benefits for farmers and ecological benefits for surrounding landscapes. However, adoption of these practices has been slow, requiring a more nuanced examination of both barriers and opportunities to improve adoption rates. While previous research has demonstrated that both individual and structural factors shape farmers' decisions about whether to adopt diversification practices, this study aims to understand the interaction of these individual and structural factors, and how they relate to farm scale. Based on 20 interviews with organic lettuce growers on the Central Coast of California, as well as 8 interviews with technical assistance providers who work with these growers, we constructed a typology to help elucidate the distinct contexts that shape growers' decisions about diversification practices. This typology, which reflects the structural influence of land rent and supply chains, divides growers into three categories: limited resource, mid-scale diversified, or wholesale. In this economic context, limited resource and wholesale growers both experience significant barriers that constrain the adoption of diversification practices, while some mid-scale diversified growers have found a “sweet spot” for managing agroecosystems that can succeed in both economic and ecological terms. The key enabling factors that allow these farmers to choose diversification, however, are not directly related to their farm size, but have more to do with secure land tenure, adequate access to capital and resources, and buyers who share their values and are willing to pay a premium. By focusing on these key enabling factors with targeted policies, we believe it is possible to encourage diversification practices on farms at a variety of scales within California's Central Coast. 
    more » « less
  5. Abstract

    Over 70% of the 62 million hectares of cropland in the Midwestern United States is grown in corn-based rotations. These crop rotations are caught in a century-long simplification trend despite robust evidence demonstrating yield and soil benefits from diversified rotations. Our ability to explore and explain this trend will come in part from observing the biophysical and policy influences on farmers’ crop choices at one key level of management: the field. Yet field-level crop rotation patterns remain largely unstudied at regional scales and will be essential for understanding how national agricultural policy manifests locally and interacts with biophysical phenomena to erode—or bolster—soil and environmental health, agricultural resilience, and farmers’ livelihoods. We developed a novel indicator of crop rotational complexity and applied it to 1.5 million fields across the US Midwest. We used bootstrapped linear mixed models to regress field-level rotational complexity against biophysical (land capability, precipitation) and policy-driven (distance to the nearest biofuel plant and grain elevator) factors. After accounting for spatial autocorrelation, there were statistically clear negative relationships between rotational complexity and biophysical factors (land capability and precipitation during the growing season), indicating decreased rotation in prime growing areas. A positive relationship between rotational complexity and distance to the nearest biofuel plant suggests policy-based, as well as biophysical, constraints on regional rotations. This novel RCI is a promising tool for future fine-scale rotational analysis and demonstrates that the United States’ most fertile soils are the most prone to degradation, with recent policy choices further exacerbating this trend.

     
    more » « less
  6. Abstract

    Soil organic nitrogen (N) is a critical resource for plants and microbes, but the processes that govern its cycle are not well-described. To promote a holistic understanding of soil N dynamics, we need an integrated model that links soil organic matter (SOM) cycling to bioavailable N in both unmanaged and managed landscapes, including agroecosystems. We present a framework that unifies recent conceptual advances in our understanding of three critical steps in bioavailable N cycling: organic N (ON) depolymerization and solubilization; bioavailable N sorption and desorption on mineral surfaces; and microbial ON turnover including assimilation, mineralization, and the recycling of microbial products. Consideration of the balance between these processes provides insight into the sources, sinks, and flux rates of bioavailable N. By accounting for interactions among the biological, physical, and chemical controls over ON and its availability to plants and microbes, our conceptual model unifies complex mechanisms of ON transformation in a concrete conceptual framework that is amenable to experimental testing and translates into ideas for new management practices. This framework will allow researchers and practitioners to use common measurements of particulate organic matter (POM) and mineral-associated organic matter (MAOM) to design strategic organic N-cycle interventions that optimize ecosystem productivity and minimize environmental N loss.

     
    more » « less