skip to main content


Search for: All records

Creators/Authors contains: "Braverman, Boris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Photon number resolving (PNR) measurements are beneficial or even necessary for many applications in quantum optics. Unfortunately, PNR detectors are usually large, slow, expensive, and difficult to operate. However, if the input signal is multiplexed, photon “click” detectors, that lack an intrinsic photon number resolving capability, can still be used to realize photon number resolution. Here, we investigate the operation of a single click detector, together with a storage line with tunable outcoupling. Using adaptive feedback to adjust the storage outcoupling rate, the dynamic range of the detector can in certain situations be extended by up to an order of magnitude relative to a purely passive setup. An adaptive approach can thus allow for photon number variance below the quantum shot noise limit under a wider range of conditions than using a passive multiplexing approach. This can enable applications in quantum enhanced metrology and quantum computing.

     
    more » « less
  2. Quantitative phase imaging provides a way to image transparent objects, such as biological cells, and measure their thickness. We report on a phase-imaging method that achieves twice the phase shift and approximately 1.7 times the spatial resolution of an equivalent spatially and temporally coherent classical quantitative phase-imaging system by using quantum interference between successive spontaneous parametric downconversion events in a nonlinear crystal. Furthermore, our method is approximately 1000 times faster than imaging the parametric downconversion photons in coincidence, which requires measurement times on the order of tens of hours. Our method may be useful for imaging sensitive transparent objects that require low illumination intensities at near-infrared and longer illumination wavelengths, such as photosensitive biological samples.

     
    more » « less
  3. We report a high-finesse bow-tie cavity designed for atomic physics experiments with Rydberg atom arrays. The cavity has a finesse of 51,000 and a waist of 7.1μm at the cesium D2 line (852 nm). With these parameters, the cavity is expected to induce strong coupling between a single atom and a single photon, corresponding to a cooperativity per traveling mode of 35 at the cavity waist. To trap and image atoms, the cavity setup utilizes two in-vacuum aspheric lenses with a numerical aperture (NA) of 0.35 and is capable of housingNA = 0.5 microscope objectives. In addition, the large atom-mirror distance (≳<#comment/>1.5cm) provides good optical access and minimizes stray electric fields at the position of the atoms. This cavity setup can operate in tandem with a Rydberg array platform, creating a fully connected system for quantum simulation and computation.

     
    more » « less
  4. null (Ed.)