skip to main content


Search for: All records

Creators/Authors contains: "Brennan, Reid S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Metazoan adaptation to global change relies on selection of standing genetic variation. Determining the extent to which this variation exists in natural populations, particularly for responses to simultaneous stressors, is essential to make accurate predictions for persistence in future conditions. Here, we identified the genetic variation enabling the copepod Acartia tonsa to adapt to experimental ocean warming, acidification, and combined ocean warming and acidification (OWA) over 25 generations of continual selection. Replicate populations showed a consistent polygenic response to each condition, targeting an array of adaptive mechanisms including cellular homeostasis, development, and stress response. We used a genome-wide covariance approach to partition the allelic changes into three categories: selection, drift and replicate-specific selection, and laboratory adaptation responses. The majority of allele frequency change in warming (57%) and OWA (63%) was driven by shared selection pressures across replicates, but this effect was weaker under acidification alone (20%). OWA and warming shared 37% of their response to selection but OWA and acidification shared just 1%, indicating that warming is the dominant driver of selection in OWA. Despite the dominance of warming, the interaction with acidification was still critical as the OWA selection response was highly synergistic with 47% of the allelic selection response unique from either individual treatment. These results disentangle how genomic targets of selection differ between single and multiple stressors and demonstrate the complexity that nonadditive multiple stressors will contribute to predictions of adaptation to complex environmental shifts caused by global change. 
    more » « less
  2. Abstract

    Selection along environmental gradients can drive reproductive isolation and speciation. Among fishes, salinity is a major factor limiting species distributions, and despite its importance in generating species diversity, speciation events between marine and freshwater are rare. Here, we tested for mechanisms of reproductive isolation between locally adapted freshwater and brackish water‐native populations of killifish,Fundulus heteroclitus, from either side of a hybrid zone along a salinity gradient. There was evidence for pre‐zygotic endogenous reproductive isolation with reduced fertilization success between crosses of freshwater‐native males and brackish water‐native females. Exogenous pre‐zygotic isolation was also present where females had highest fertilization in their native salinity. We used a replicated mass spawning design to test for mate choice in both brackish and fresh water. After genotyping 187 parents and 2523 offspring at 2347 SNPs across the genome, 85% of offspring were successfully assign to their parents. However, no reinforcing mate choice was observed. These results therefore demonstrate emerging, yet limited, reproductive isolation and incipient speciation across a marine to freshwater salinity gradient and suggest that both endogenous and exogenous mechanisms, but not assortative mating, contribute to divergence.

     
    more » « less
  3. Abstract

    Adaptive evolution and phenotypic plasticity will fuel resilience in the geologically unprecedented warming and acidification of the earth’s oceans, however, we have much to learn about the interactions and costs of these mechanisms of resilience. Here, using 20 generations of experimental evolution followed by three generations of reciprocal transplants, we investigated the relationship between adaptation and plasticity in the marine copepod,Acartia tonsa, in future global change conditions (high temperature and high CO2). We found parallel adaptation to global change conditions in genes related to stress response, gene expression regulation, actin regulation, developmental processes, and energy production. However, reciprocal transplantation showed that adaptation resulted in a loss of transcriptional plasticity, reduced fecundity, and reduced population growth when global change-adapted animals were returned to ambient conditions or reared in low food conditions. However, after three successive transplant generations, global change-adapted animals were able to match the ambient-adaptive transcriptional profile. Concurrent changes in allele frequencies and erosion of nucleotide diversity suggest that this recovery occurred via adaptation back to ancestral conditions. These results demonstrate that while plasticity facilitated initial survival in global change conditions, it eroded after 20 generations as populations adapted, limiting resilience to new stressors and previously benign environments.

     
    more » « less
  4. Synopsis Environmental variation experienced by a species across space and time can promote the maintenance of genetic diversity that may be adaptive in future global change conditions. Selection experiments have shown that purple sea urchin, Strongylocentrotus purpuratus, populations have adaptive genetic variation for surviving pH conditions at the “edge” (pH 7.5) of conditions experienced in nature. However, little is known about whether populations have genetic variation for surviving low-pH events beyond those currently experienced in nature or how variation in pH conditions affects organismal and genetic responses. Here, we quantified survival, growth, and allele frequency shifts in experimentally selected developing purple sea urchin larvae in static and variable conditions at three pH levels: pH 8.1 (control), pH 7.5 (edge-of-range), and pH 7.0 (extreme). Variable treatments recovered body size relative to static treatments, but resulted in higher mortality, suggesting a potential tradeoff between survival and growth under pH stress. However, within each pH level, allele frequency changes were overlapping between static and variable conditions, suggesting a shared genetic basis underlying survival to mean pH regardless of variability. In contrast, genetic responses to pH 7.5 (edge) versus pH 7.0 (extreme) conditions were distinct, indicating a unique genetic basis of survival. In addition, loci under selection were more likely to be in exonic regions than regulatory, indicating that selection targeted protein-coding variation. Loci under selection in variable pH 7.5 conditions, more similar to conditions periodically experienced in nature, performed functions related to lipid biosynthesis and metabolism, while loci under selection in static pH 7.0 conditions performed functions related to transmembrane and mitochondrial processes. While these results are promising in that purple sea urchin populations possess genetic variation for surviving extreme pH conditions not currently experienced in nature, they caution that increased acidification does not result in a linear response but elicits unique physiological stresses and survival mechanisms. 
    more » « less
  5. Abstract

    Variation in the metabolic costs associated with organismal maintenance may play a key role in determining fitness, and thus these differences among individuals are likely to be subject to natural selection. Although the evolvability of maintenance metabolism depends on its underlying genetic architecture, relatively little is known about the nature of genetic variation that underlies this trait. To address this, we measured variation in routine metabolic rate (O2routine), an index of maintenance metabolism, within and among three populations of Atlantic killifish,Fundulus heteroclitus, including a population from a region of genetic admixture between two subspecies. Polygenic association tests among individuals from the admixed population identified 54 single nucleotide polymorphisms (SNPs) that were associated withO2routine, and these SNPs accounted for 43% of interindividual variation in this trait. However, genetic associations withO2routineinvolved different SNPs if females and males were analysed separately, and there was a sex‐dependent effect of mitochondrial genotype on variation in routine metabolism. These results imply that there are sex‐specific genetic mechanisms, and potential mitonuclear interactions, that underlie variation inO2routine. Additionally, there was evidence for epistatic interactions between 17% of the possible pairs of trait‐associated SNPs, suggesting that epistatic effects onO2routineare common. These data demonstrate not only that phenotypic variation in this ecologically important trait has a polygenic basis with considerable epistasis among loci, but also that these underlying genetic mechanisms, and particularly the role of mitochondrial genotype, may be sex‐specific.

     
    more » « less
  6. Abstract

    The resilience of organisms to climate change through adaptive evolution is dependent on the extent of genetically based variation in key phenotypic traits and the nature of genetic associations between them. For aquatic animals, upper thermal tolerance and hypoxia tolerance are likely to be a important determinants of sensitivity to climate change. To determine the genetic basis of these traits and to detect associations between them, we compared naturally occurring populations of two subspecies of Atlantic killifish,Fundulus heteroclitus, that differ in both thermal and hypoxia tolerance. Multilocus association mapping demonstrated that 47 and 35 single nucleotide polymorphisms (SNPs) explained 43.4% and 51.9% of variation in thermal and hypoxia tolerance, respectively, suggesting that genetic mechanisms underlie a substantial proportion of variation in each trait. However, no explanatory SNPs were shared between traits, and upper thermal tolerance varied approximately linearly with latitude, whereas hypoxia tolerance exhibited a steep phenotypic break across the contact zone between the subspecies. These results suggest that upper thermal tolerance and hypoxia tolerance are neither phenotypically correlated nor genetically associated, and thus that rates of adaptive change in these traits can be independently fine‐tuned by natural selection. This modularity of important traits can underpin the evolvability of organisms to complex future environmental change.

     
    more » « less
  7. Abstract

    The mitonuclear species concept hypothesizes that incompatibilities between interacting gene products of the nuclear and mitochondrial genomes are a major factor establishing and maintaining species boundaries. However, most of the data available to test this concept come from studies of genetic variation in mitochondrial DNA, and clines in the mitochondrial genome across contact zones can be produced by a variety of forces. Here, we show that using a combination of population genomic analyses of the nuclear and mitochondrial genomes and studies of mitochondrial function can provide insight into the relative roles of neutral processes, adaptive evolution, and mitonuclear incompatibility in establishing and maintaining mitochondrial clines, using Atlantic killifish (Fundulus heteroclitus) as a case study. There is strong evidence for a role of secondary contact following the last glaciation in shaping a steep mitochondrial cline across a contact zone between northern and southern subspecies of killifish, but there is also evidence for a role of adaptive evolution in driving differentiation between the subspecies in a variety of traits from the level of the whole organism to the level of mitochondrial function. In addition, studies are beginning to address the potential for mitonuclear incompatibilities in admixed populations. However, population genomic studies have failed to detect evidence for a strong and pervasive influence of mitonuclear incompatibilities, and we suggest that polygenic selection may be responsible for the complex patterns observed. This case study demonstrates that multiple forces can act together in shaping mitochondrial clines, and illustrates the challenge of disentangling their relative roles.

     
    more » « less