skip to main content


Search for: All records

Creators/Authors contains: "Brodsky, Emily E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Foreshocks are the only currently widely identified precursory seismic behavior, yet their utility and even identifiability are problematic, in part because of extreme variation in behavior. Here, we establish some global trends that help identify the expected frequency of foreshocks as well the type of earthquake most prone to foreshocks. We establish these tendencies using the global earthquake catalog of the U.S. Geological Survey National Earthquake Information Center with a completeness level of magnitude 5 and mainshocks with Mw≥7.0. Foreshocks are identified using three clustering algorithms to address the challenge of distinguishing foreshocks from background activity. The methods give a range of 15%–43% of large mainshocks having at least one foreshock but a narrower range of 13%–26% having at least one foreshock with magnitude within two units of the mainshock magnitude. These observed global foreshock rates are similar to regional values for a completeness level of magnitude 3 using the same detection conditions. The foreshock sequences have distinctive characteristics with the global composite population b-values being lower for foreshocks than for aftershocks, an attribute that is also manifested in synthetic catalogs computed by epidemic-type aftershock sequences, which intrinsically involves only cascading processes. Focal mechanism similarity of foreshocks relative to mainshocks is more pronounced than for aftershocks. Despite these distinguishing characteristics of foreshock sequences, the conditions that promote high foreshock productivity are similar to those that promote high aftershock productivity. For instance, a modestly higher percentage of interplate mainshocks have foreshocks than intraplate mainshocks, and reverse faulting events slightly more commonly have foreshocks than normal or strike-slip-faulting mainshocks. The western circum-Pacific is prone to having slightly more foreshock activity than the eastern circum-Pacific.

     
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  2. Abstract

    Variations in fault zone maturity have intermittently been invoked to explain variations in some seismological observations for large earthquakes. However, the lack of a unified geological definition of fault maturity makes quantitative assessment of its importance difficult. We evaluate the degree of empirical correlation between geological and geometric measurements commonly invoked as indicative of fault zone maturity and remotely measured seismological source parameters of 34MW ≥ 6.0 shallow strike‐slip events. Metrics based on surface rupture segmentation, such as number of segments and surface rupture azimuth changes, correlate best with seismic source attributes while the correlations with cumulative fault slip are weaker. Average rupture velocity shows the strongest correlation with metrics of maturity, followed by relative aftershock productivity. Mature faults have relatively lower aftershock productivity and higher rupture velocity. A more complex relation is found with moment‐scaled radiated energy. There appears to be distinct behavior of very immature events which radiate modest seismic energy, while intermediate mature faults have events with higher moment‐scaled radiated energy and very mature faults with increasing cumulative slip tend to have events with reduced moment‐scaled radiated energy. These empirical comparisons establish that there are relationships between remote seismological observations and fault system maturity that can help to understand variations in seismic hazard among different fault environments and to assess the relative maturity of inaccessible or blind fault systems for which direct observations of maturity are very limited.

     
    more » « less
  3. Abstract Measures of foreshock occurrence are systematically examined using earthquake catalogs for eight regions (Italy, southern California, northern California, Costa Rica, Onshore Japan, Alaska, Turkey, and Greece) after imposing a magnitude ≥3.0 completeness level. Foreshocks are identified using three approaches: a magnitude-dependent space + fixed-time windowing method, a nearest-neighbor clustering method, and a modified magnitude-dependent space + variable-time windowing method. The method with fixed-time windows systematically yields higher counts of foreshocks than the other two clustering methods. We find similar counts of foreshocks across the three methods when the magnitude aperture is equalized by including only earthquakes in the magnitude range M*−2≤ M< M*, in which M* is the mainshock magnitude. For most of the catalogs (excluding Italy and southern California), the measured b-values of the foreshocks of all region-specific mainshocks are lower by 0.1–0.2 than b-values of respective aftershocks. Allowing for variable-time windows results in relatively high probabilities of having at least one foreshock in Italy (∼43%–56%), compared to other regional catalogs. Foreshock probabilities decrease to 14%–41% for regions such as Turkey, Greece, and Costa Rica. Similar trends are found when requiring at least five foreshocks in a sequence to be considered. Estimates of foreshock probabilities for each mainshock are method dependent; however, consistent regional trends exist regardless of method, with regions such as Italy and southern California producing more observable foreshocks than Turkey and Greece. Some regions with relatively high background seismicity have comparatively low probabilities of detectable foreshock activity when using methods that account for variable background, possibly due to depletion of near-failure fault conditions by background activity. 
    more » « less
  4. On 15 January 2022, unusual waves appeared in Earth’s atmosphere and oceans ( 1 – 3 ). The origin of the waves was clearly the catastrophic volcanic eruption in Tonga, which pummeled the atmosphere with the largest eruptive plume since the 1883 eruption of Krakatoa, Indonesia. On page 95 of this issue, Matoza et al. ( 4 ) show that the 2022 Tonga eruption generated waves in the water, air, and even in the ionosphere that wrapped around Earth multiple times. Tsunamis appeared to hop across the land into all of the major ocean basins. And on page 91 of this issue, Kubota et al. ( 5 ) explain that the tsunamis arrived much earlier than expected on the basis of conventional tsunami modeling, and the wave trains lasted much longer than for even the largest earthquakes ( 5 ). 
    more » « less
  5. Abstract

    Earthquakes rarely occur in isolation but rather as complex sequences of fore, main and aftershocks. Assessing the associated seismic hazard requires a holistic view of event interactions. We conduct frictional sliding experiments on faulted Westerly Granite samples at mid‐crustal stresses to investigate fault damage and roughness effects on aftershock generation. Abrupt laboratory fault slip is followed by periods of extended stress relaxation and aftershocks. Large roughness promotes less co‐seismic slip and high aftershock activity whereas smooth faults promote high co‐seismic slip with few aftershocks. Conditions close to slip instability generate lab‐quake sequences that exhibit similar statistical distributions to natural earthquakes. Aftershock productivity in the lab is linearly related to the residual strain energy on the fault which, in turn, is controlled by the level of surface heterogeneity. We conclude that roughness and damage govern slip stability and seismic energy partitioning between fore, main and aftershocks in lab and nature.

     
    more » « less
  6. Abstract

    Seismology is witnessing explosive growth in the diversity and scale of earthquake catalogs. A key motivation for this community effort is that more data should translate into better earthquake forecasts. Such improvements are yet to be seen. Here, we introduce the Recurrent Earthquake foreCAST (RECAST), a deep‐learning model based on recent developments in neural temporal point processes. The model enables access to a greater volume and diversity of earthquake observations, overcoming the theoretical and computational limitations of traditional approaches. We benchmark against a temporal Epidemic Type Aftershock Sequence model. Tests on synthetic data suggest that with a modest‐sized data set, RECAST accurately models earthquake‐like point processes directly from cataloged data. Tests on earthquake catalogs in Southern California indicate improved fit and forecast accuracy compared to our benchmark when the training set is sufficiently long (>104events). The basic components in RECAST add flexibility and scalability for earthquake forecasting without sacrificing performance.

     
    more » « less
  7. Abstract

    Seismic moment and rupture length can be combined to infer stress drop, a key parameter for assessing earthquakes. In natural earthquakes, stress drops are largely depth‐independent, which is surprising given the expected dependence of frictional stress on normal stresses and hence overburden. We have developed a transparent experimental fault that allows direct observation of thousands of slip events, with ruptures that are fully contained within the fault. Surprisingly, the observed stress drops are largely independent of both the magnitude of normal stress and its heterogeneity, capturing the independence seen in nature. However, we observe larger, normal stress‐dependent stress drops when the fault area is reduced, which allows slip events to frequently reach the edge of the interface. We conclude that confined ruptures have normal stress independent stress drops, and thus the depth‐independent stress drops of tectonic earthquakes may be a consequence of their confined nature.

     
    more » « less
  8. Abstract

    Seismicity during explosive volcanic eruptions remains challenging to observe through the eruptive noise, leaving first‐order questions unanswered. How do earthquake rates change as eruptions progress, and what is their relationship to the opening and closing of the eruptive vent? To address these questions for the Okmok Volcano 2008 explosive eruption, Volcano Explosivity Index 4, we utilized modern detection methods to enhance the existing earthquake catalog. Our enhanced catalog detected significantly more earthquakes than traditional methods. We located, relocated, determined magnitudes and classified all events within this catalog. Our analysis reveals distinct behaviors for long‐period (LP) and volcano‐tectonic (VT) earthquakes, providing insights into the opening and closing cycle. LP earthquakes occur as bursts beneath the eruptive vent and do not coincide in time with the plumes, indicating their relationship to an eruptive process that occurs at a high pressurization state, that is, partially closed conduit. In contrast, VT earthquakes maintain a steadier rate over a broader region, do not track the caldera deflation and have a largerb‐value during the eruption than before or after. The closing sequence is marked by a burst of LPs followed by small VTs south of the volcano. The opening sequence differs as only VTs extend to depth and migrate within minutes of the eruption onset. Our high‐resolution catalog offers valuable insights, demonstrating that volcanic conduits can transition between partially closed (clogged) and open (cracked) states during an eruption. Utilizing modern earthquake processing techniques enables clearer understanding of eruptions and holds promise for studying other volcanic events.

     
    more » « less
  9. Abstract Gulia and Wiemer (2019; hereafter, GW2019) proposed a near-real-time monitoring system to discriminate between foreshocks and aftershocks. Our analysis (Dascher-Cousineau et al., 2020; hereinater, DC2020) tested the sensitivity of the proposed Foreshock Traffic-Light System output to parameter choices left to expert judgment for the 2019 Ridgecrest Mw 7.1 and 2020 Puerto Rico Mw 6.4 earthquake sequences. In the accompanying comment, Gulia and Wiemer (2021) suggest that at least six different methodological deviations lead to different pseudoprospective warning levels, particularly for the Ridgecrest aftershock sequence which they had separately evaluated. Here, we show that for four of the six claimed deviations, we conformed to the criteria outlined in GW2019. Two true deviations from the defined procedure are clarified and justified here. We conclude as we did originally, by emphasizing the influence of expert judgment on the outcome in the analysis. 
    more » « less