skip to main content


Search for: All records

Creators/Authors contains: "Brown, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Self-reported and biometrically measured hot flashes in relation to ambient temperature and humidity Lynnette L. Sievert, PhD1, Sofiya Shreyer, MA,1 Daniel E. Brown, PhD2 1Anthropology, UMass Amherst, MA; 2Anthropology, University of Hawaii at Hilo, HI Objective: Warm ambient temperatures provoke hot flashes in the laboratory, but outside the laboratory the temperature to hot flash relationship is less consistent. A study in Bangladesh and London found that temperature and humidity at 12:00 and 18:00 were not associated with self-reported or biometrically measured hot flashes. However, in Spain and three South American countries, higher temperatures and humidities were associated with more frequent and problematic hot flashes. The study reported here differs from previous work in that we asked women to carry an ambulatory temperature and humidity monitor while wearing an ambulatory hot flash monitor. The purpose of this study was to examine the relationship between concurrent temperature, humidity, and hot flash experience. We hypothesized more frequent hot flashes with higher ambient temperatures. Design: Women aged 45 to 55 years were drawn from western Massachusetts for an ongoing cross-sectional study (n=195) from October through April (2019-2023). Exclusion criteria included use of medications that dampen hot flashes. Hot flashes were queried with a semi-structured questionnaire: During the past two weeks, have you been bothered by hot flashes (not at all, a little, somewhat, a lot)? Currently, how often do they occur (from less than 1/month to 5+ times/day, scored 0-8)? Hot flashes were also assessed by sternal skin conductance using a Biolog ambulatory hot flash monitor (3991x/1-SCL, UFI, Morro Bay, CA). Subjective hot flashes during the 24-hour study period were recorded with buttons on the hot flash monitor. Ambient temperature and humidity were continuously recorded with the GSP-6 Temperature and Humidity Data Logger Recorder (Elitech Technology, San Jose, CA). Menopausal status was categorized as pre-, peri- (change in cycle length >6 days) and post- (absence of menses for 12 months). Univariate relationships between temperature (maximum, minimum, mean), humidity (maximum, minimum, mean), and hot flashes (yes/no) were examined by t-tests. Temperature, humidity, and hot flash bothersomeness were examined by ANOVA. Pearson correlations were used to evaluate temperature, humidity, and hot flash frequencies (from the questionnaire and Biolog monitor). Logistic regression was also applied to examine temperature and humidity measures in relation to hot flashes while adjusting for menopausal status. Results: Mean ambient temperatures ranged from 16.3 to 30.1oC (mean 24.5oC, s.d. 2.8); mean humidities ranged from 18.9 to 68.6% (mean 40.8%, s.d. 9.2). Minimum temperature was positively associated with minimum (r=0.508, p<0.001) and mean (r=0.316, p<0.001) measures of humidity. Hot flash bothersomeness was described as not at all (31%), a little (23%), somewhat (23%), and a lot (24%). In univariate analyses, maximum, minimum, and mean temperatures and humidity levels were not associated with hot flashes (yes/no) or with the bothersomeness of hot flashes. Temperature measures were not correlated with current frequency of hot flashes or with the frequency of objective or subjective hot flashes during the study period. However, the current frequency of hot flashes was negatively correlated with minimum (r=-0.205, p<0.01) and mean (r=-0.196, p<0.01) levels of humidity, so that as humidity levels increased, the likelihood of hot flashes decreased. Although participants were keen to wear the monitor for 24-hours, the Biolog monitor quit during 38% of the studies. In the majority of cases, participants restarted the monitor. Compared to monitors that continued to function, monitors that quit were more likely to be worn when minimum temperatures were lower (mean 6.8oC vs. 8.9 oC, p=0.03), minimum humidity levels were lower (mean 17.2% vs. 22.6%, p<0.001), and mean humidity levels were lower (mean 37.2% vs. 43.0%, p<0.001). Conclusion: The hypothesized positive relationship between temperature and hot flashes was not supported. Instead, as humidity levels increased, the likelihood of hot flashes decreased. This preliminary study will be followed by syncing of the temperature, humidity, and hot flash data in order to study how changes in temperature and/or humidity may provoke hot flashes. Funding: NSF Grant #BCS-1848330 
    more » « less
  2. Abstract Background

    The COVID-19 pandemic presented challenges that disproportionately impacted women. Household roles typically performed by women (such as resource acquisition and caretaking) became more difficult due to financial strain, fear of infection, and limited childcare options among other concerns. This research draws from an on-going study of hot flashes and brown adipose tissue to examine the health-related effects of the COVID-19 pandemic among 162 women aged 45–55 living in western Massachusetts.

    Methods

    We compared women who participated in the study pre- and early pandemic with women who participated mid-pandemic and later-pandemic (when vaccines became widely available). We collected self-reported symptom frequencies (e.g., aches/stiffness in joints, irritability), and assessments of stress, depression, and physical activity through questionnaires as well as measures of adiposity (BMI and percent body fat). Additionally, we asked open-ended questions about how the pandemic influenced women’s health and experience of menopause. Comparisons across pre-/early, mid-, and later pandemic categories were carried out using ANOVA and Chi-square analyses as appropriate. The Levene test for homogeneity of variances was examined prior to each ANOVA. Open-ended questions were analyzed for yes/no responses and general themes.

    Results

    Contrary to our hypothesis that women would suffer negative health-related consequences during the COVID-19 pandemic, we found no significant differences in women’s health-related measures or physical activity across the pandemic. However, our analysis of open-ended responses revealed a bi-modal distribution of answers that sheds light on our unexpected findings. While some women reported higher levels of stress and anxiety and lower levels of physical activity, other women reported benefitting from the remote life that the pandemic imposed and described having more time to spend on physical activity or in quality time with their families.

    Conclusions

    In this cross-sectional comparison of women during the pre-/early, mid-, and later-pandemic, we found no significant differences across means in multiple health-related variables. However, open-ended questions revealed that while some women suffered health-related effects during the pandemic, others experienced conditions that improved their health and well-being. The differential results of this study highlight a need for more nuanced and intersectional research on risk, vulnerabilities, and coping among mid-life women.

     
    more » « less
  3. null (Ed.)