skip to main content


Search for: All records

Creators/Authors contains: "Bunton, John D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We report the results of the rapid follow-up observations of gamma-ray bursts (GRBs) detected by the Fermi satellite to search for associated fast radio bursts. The observations were conducted with the Australian Square Kilometre Array Pathfinder at frequencies from 1.2 to 1.4 GHz. A set of 20 bursts, of which four were short GRBs, were followed up with a typical latency of about 1 min, for a duration of up to 11 h after the burst. The data were searched using 4096 dispersion measure trials up to a maximum dispersion measure of 3763 pc cm−3, and for pulse widths w over a range of duration from 1.256 to 40.48 ms. No associated pulsed radio emission was observed above $26 \, {\rm Jy\, ms}\, (w/1\, {\rm ms})^{-1/2}$ for any of the 20 GRBs. 
    more » « less
  2. ABSTRACT Active M dwarfs are known to produce bursty radio emission, and multiwavelength studies have shown that solar-like magnetic activity occurs in these stars. However, coherent bursts from active M dwarfs have often been difficult to interpret in the solar activity paradigm. We present Australian Square Array Pathfinder (ASKAP) observations of UV Ceti at a central frequency of 888 MHz. We detect several periodic, coherent pulses occurring over a time-scale consistent with the rotational period of UV Ceti. The properties of the pulsed emission show that they originate from the electron cyclotron maser instability, in a cavity at least 7 orders of magnitude less dense than the mean coronal density at the estimated source altitude. These results confirm that auroral activity can occur in active M dwarfs, suggesting that these stars mark the beginning of the transition from solar-like to auroral magnetospheric behaviour. These results demonstrate the capabilities of ASKAP for detecting polarized, coherent bursts from active stars and other systems. 
    more » « less