skip to main content


Search for: All records

Creators/Authors contains: "Burgay, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Spider pulsars continue to provide promising candidates for neutron star mass measurements. Here we present the discovery of PSR J1910−5320, a new millisecond pulsar discovered in a MeerKAT observation of an unidentified Fermi-LAT gamma-ray source. This pulsar is coincident with a recently identified candidate redback binary, independently discovered through its periodic optical flux and radial velocity. New multicolour optical light curves obtained with ULTRACAM/New Technology Telescope in combination with MeerKAT timing and updated SOAR/Goodman spectroscopic radial velocity measurements allow a mass constraint for PSR J1910−5320. icarus optical light curve modelling, with streamlined radial velocity fitting, constrains the orbital inclination and companion velocity, unlocking the binary mass function given the precise radio ephemeris. Our modelling aims to unite the photometric and spectroscopic measurements available by fitting each simultaneously to the same underlying physical model, ensuring self-consistency. This targets centre-of-light radial velocity corrections necessitated by the irradiation endemic to spider systems. Depending on the gravity darkening prescription used, we find a moderate neutron star mass of either 1.6 ± 0.2 or 1.4 ± 0.2 M⊙. The companion mass of either 0.45 ± 0.04 or $0.43^{+0.04}_{-0.03}$M⊙ also further confirms PSR J1910−5320 as an irradiated redback spider pulsar.

     
    more » « less
  2. ABSTRACT

    We present the discovery of 37 pulsars from ∼ 20 yr old archival data of the Parkes Multibeam Pulsar Survey using a new FFT-based search pipeline optimized for discovering narrow-duty cycle pulsars. When developing our pulsar search pipeline, we noticed that the signal-to-noise ratios of folded and optimized pulsars often exceeded that achieved in the spectral domain by a factor of two or greater, in particular for narrow duty cycle ones. Based on simulations, we verified that this is a feature of search codes that sum harmonics incoherently and found that many promising pulsar candidates are revealed when hundreds of candidates per beam even with modest spectral signal-to-noise ratios of S/N∼5–6 in higher-harmonic folds (up to 32 harmonics) are folded. Of these candidates, 37 were confirmed as new pulsars and a further 37 would have been new discoveries if our search strategies had been used at the time of their initial analysis. While 19 of these newly discovered pulsars have also been independently discovered in more recent pulsar surveys, 18 are exclusive to only the Parkes Multibeam Pulsar Survey data. Some of the notable discoveries include: PSRs J1635−47 and J1739−31, which show pronounced high-frequency emission; PSRs J1655−40 and J1843−08 belong to the nulling/intermittent class of pulsars; and PSR J1636−51 is an interesting binary system in a ∼0.75 d orbit and shows hints of eclipsing behaviour – unusual given the 340 ms rotation period of the pulsar. Our results highlight the importance of reprocessing archival pulsar surveys and using refined search techniques to increase the normal pulsar population.

     
    more » « less
  3. ABSTRACT

    Galactic plane radio surveys play a key role in improving our understanding of a wide range of astrophysical phenomena. Performing such a survey using the latest interferometric telescopes produces large data rates necessitating a shift towards fully or quasi-real-time data analysis with data being stored for only the time required to process them. We present here the overview and set-up for the 3000-h Max-Planck-Institut für Radioastronomie (MPIfR)–MeerKAT Galactic Plane Survey (MMGPS). The survey is unique by operating in a commensal mode, addressing key science objectives of the survey including the discovery of new pulsars and transients and studies of Galactic magnetism, the interstellar medium and star formation rates. We explain the strategy coupled with the necessary hardware and software infrastructure needed for data reduction in the imaging, spectral, and time domains. We have so far discovered 78 new pulsars including 17 confirmed binary systems of which two are potential double neutron star systems. We have also developed an imaging pipeline sensitive to the order of a few tens of micro-Jansky ($\mu{\rm Jy}$) with a spatial resolution of a few arcseconds. Further science operations with an in-house built S-band receiver operating between 1.7 and 3.5 GHz are about to commence. Early spectral line commissioning observations conducted at S-band, targeting transitions of the key molecular gas tracer CH at 3.3 GHz already illustrate the spectroscopic capabilities of this instrument. These results lay a strong foundation for future surveys with telescopes like the Square Kilometre Array (SKA).

     
    more » « less
  4. ABSTRACT

    The most massive globular cluster in our Galaxy, Omega Centauri, is an interesting target for pulsar searches, because of its multiple stellar populations and the intriguing possibility that it was once the nucleus of a galaxy that was absorbed into the Milky Way. The recent discoveries of pulsars in this globular cluster and their association with known X-ray sources was a hint that, given the large number of known X-ray sources, there is a much larger undiscovered pulsar population. We used the superior sensitivity of the MeerKAT radio telescope to search for pulsars in Omega Centauri. In this paper, we present some of the first results of this survey, including the discovery of 13 new pulsars; the total number of known pulsars in this cluster currently stands at 18. At least half of them are in binary systems and preliminary orbital constraints suggest that most of the binaries have light companions. We also discuss the ratio between isolated and binaries pulsars, and how they were formed in this cluster.

     
    more » « less
  5. ABSTRACT We report observed and derived timing parameters for three millisecond pulsars (MSPs) from observations collected with the Parkes 64-m telescope, Murriyang. The pulsars were found during reprocessing of archival survey data by Mickaliger et al. One of the new pulsars (PSR J1546–5925) has a spin period P = 7.8 ms and is isolated. The other two (PSR J0921–5202 with P = 9.7 ms and PSR J1146–6610 with P = 3.7 ms) are in binary systems around low-mass (${\gt}0.2\, {\rm M}_{\odot }$) companions. Their respective orbital periods are 38.2 and 62.8 d. While PSR J0921–5202 has a low orbital eccentricity e = 1.3 × 10−5, in keeping with many other Galactic MSPs, PSR J1146–6610 has a significantly larger eccentricity, e = 7.4 × 10−3. This makes it a likely member of a group of eccentric MSP–helium white dwarf binary systems in the Galactic disc whose formation is poorly understood. Two of the pulsars are co-located with previously unidentified point sources discovered with the Fermi satellite’s Large Area Telescope, but no γ-ray pulsations have been detected, likely due to their low spin-down powers. We also show that, particularly in terms of orbital diversity, the current sample of MSPs is far from complete and is subject to a number of selection biases. 
    more » « less
  6. ABSTRACT

    More than 100 millisecond pulsars (MSPs) have been discovered in radio observations of gamma-ray sources detected by the Fermi Large Area Telescope (LAT), but hundreds of pulsar-like sources remain unidentified. Here, we present the first results from the targeted survey of Fermi-LAT sources being performed by the Transients and Pulsars with MeerKAT (TRAPUM) Large Survey Project. We observed 79 sources identified as possible gamma-ray pulsar candidates by a Random Forest classification of unassociated sources from the 4FGL catalogue. Each source was observed for 10 min on two separate epochs using MeerKAT’s L-band receiver (856–1712 MHz), with typical pulsed flux density sensitivities of $\sim 100\, \mu$Jy. Nine new MSPs were discovered, eight of which are in binary systems, including two eclipsing redbacks and one system, PSR J1526−2744, that appears to have a white dwarf companion in an unusually compact 5 h orbit. We obtained phase-connected timing solutions for two of these MSPs, enabling the detection of gamma-ray pulsations in the Fermi-LAT data. A follow-up search for continuous gravitational waves from PSR J1526−2744 in Advanced LIGO data using the resulting Fermi-LAT timing ephemeris yielded no detection, but sets an upper limit on the neutron star ellipticity of 2.45 × 10−8. We also detected X-ray emission from the redback PSR J1803−6707 in data from the first eROSITA all-sky survey, likely due to emission from an intrabinary shock.

     
    more » « less
  7. ABSTRACT

    We searched for an isotropic stochastic gravitational wave background in the second data release of the International Pulsar Timing Array, a global collaboration synthesizing decadal-length pulsar-timing campaigns in North America, Europe, and Australia. In our reference search for a power-law strain spectrum of the form $h_c = A(f/1\, \mathrm{yr}^{-1})^{\alpha }$, we found strong evidence for a spectrally similar low-frequency stochastic process of amplitude $A = 3.8^{+6.3}_{-2.5}\times 10^{-15}$ and spectral index α = −0.5 ± 0.5, where the uncertainties represent 95 per cent credible regions, using information from the auto- and cross-correlation terms between the pulsars in the array. For a spectral index of α = −2/3, as expected from a population of inspiralling supermassive black hole binaries, the recovered amplitude is $A = 2.8^{+1.2}_{-0.8}\times 10^{-15}$. None the less, no significant evidence of the Hellings–Downs correlations that would indicate a gravitational-wave origin was found. We also analysed the constituent data from the individual pulsar timing arrays in a consistent way, and clearly demonstrate that the combined international data set is more sensitive. Furthermore, we demonstrate that this combined data set produces comparable constraints to recent single-array data sets which have more data than the constituent parts of the combination. Future international data releases will deliver increased sensitivity to gravitational wave radiation, and significantly increase the detection probability.

     
    more » « less
  8. ABSTRACT

    Using the MeerKAT radio telescope, a series of observations have been conducted to time the known pulsars and search for new pulsars in the globular cluster NGC 6440. As a result, two pulsars have been discovered, NGC 6440G and NGC 6440H, one of which is isolated and the other a non-eclipsing (at frequencies above 962 MHz) ‘Black Widow’, with a very low mass companion (Mc > 0.006 M⊙). It joins the other binary pulsars discovered so far in this cluster that all have low companion masses (Mc < 0.30 M⊙). We present the results of long-term timing solutions obtained using data from both Green Bank and MeerKAT telescopes for these two new pulsars and an analysis of the pulsars NGC 6440C and NGC 6440D. For the isolated pulsar NGC 6440C, we searched for planets using a Markov chain Monte Carlo technique. We find evidence for significant unmodelled variations but they cannot be well modelled as planets nor as part of a power-law red-noise process. Studies of the eclipses of the ‘Redback’ pulsar NGC 6440D at two different frequency bands reveal a frequency dependence with longer and asymmetric eclipses at lower frequencies (962–1283 MHz).

     
    more » « less