skip to main content


Search for: All records

Creators/Authors contains: "Burns, Douglas A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Little is known about temporal variability in nitrate concentration responses to changes in discharge on intraannual time scales in large rivers. To investigate this knowledge gap, we used a six‐year data set of daily surface water nitrate concentration and discharge averaged from near‐continuous monitoring at U.S. Geological Survey gaging stations on the Connecticut, Potomac, and Mississippi Rivers, three large rivers that contribute substantial nutrient pollution to important estuaries. Interannually, a comparison of nitrate concentration‐discharge (c‐Q) relationships between a traditional discrete grab sample data set and the near‐continuous data set revealed differing c‐Q slopes, which suggests that sample frequency can impact how we ultimately characterize hydrologic systems. Intraannually, we conducted correlation analyses over 30‐day windows to isolate the strength and direction of monthly c‐Q relationships. Monthly c‐Q slopes in the Potomac were positive (enrichment/mobilization response) in summer and fall and negative (dilution response) and weakly chemostatic (nonsignificant near‐zero c‐Q slope) in winter and spring, respectively. The Connecticut displayed a dilution response year‐round, except summer when it was weakly chemostatic. Mississippi c‐Q slopes were weakly chemostatic in all seasons and showed inconsistent responses to discharge fluctuations. The c‐Q dynamics in the Potomac and Connecticut were correlated (R > 0.3) to river temperature, flow percentile, and calendar day. Minimal correlation in the Mississippi suggests that the large basin area coupled with spatiotemporally variable anthropogenic forcings from substantial land use development created stochastic short‐term c‐Q relationships. Additional work using high‐frequency sensors across large river networks can improve our understanding of spatial source input dynamics in these natural‐human coupled systems.

     
    more » « less
  2. Abstract

    The Panola Mountain Research Watershed (PMRW) is a 41‐hectare forested catchment within the Piedmont Province of the Southeastern United States. Observations, experimentation, and numerical modelling have been conducted at Panola over the past 35 years. But to date, these studies have not been fully incorporated into a more comprehensive synthesis. Here we describe the evolving perceptual understanding of streamflow generation mechanisms at the PMRW. We show how the long‐term study has enabled insights that were initially unforeseen but are also unachievable in short‐term studies. In particular, we discuss how the accumulation of field evidence, detailed site characterization, and modelling enabled a priori hypotheses to be formed, later rejected, and then further refined through repeated field campaigns. The extensive characterization of the soil and bedrock provided robust process insights not otherwise achievable from hydrometric measurements and numerical modelling alone. We focus on two major aspects of streamflow generation: the role of hillslopes (and their connection to the riparian zone) and the role of catchment storage in controlling fluxes and transit times of water in the catchment. Finally, we present location‐independent hypotheses based on our findings at PMRW and suggest ways to assess the representativeness of PMRW in the broader context of headwater watersheds.

     
    more » « less