skip to main content


Search for: All records

Creators/Authors contains: "Burrello, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The formation of clusters at sub-saturation densities, as a result of many-body correlations, constitutes an essential feature for a reliable modelization of the nuclear matter equation of state (EoS). Phenomenological models that make use of energy density functionals (EDFs) offer a convenient approach to account for the presence of these bound states of nucleons when introduced as additional degrees of freedom. However, in these models clusters dissolve, by construction, when the nuclear saturation density is approached from below, revealing inconsistencies with recent findings that evidence the existence of short-range correlations (SRCs) even at larger densities. The idea of this work is to incorporate SRCs in established models for the EoS, in light of the importance of these features for the description of heavy-ion collisions, nuclear structure and in the astrophysical context. Our aim is to describe SRCs at supra-saturation densities by using effective quasi-clusters immersed in dense matter as a surrogate for correlations, in a regime where cluster dissolution is usually predicted in phenomenological models. Within the EDF framework, we explore a novel approach to embed SRCs within a relativistic mean-field model with density dependent couplings through the introduction of suitable in-medium modifications of the cluster properties, in particular their binding energy shifts, which are responsible for describing the cluster dissolution. As a first exploratory step, the example of a quasi-deuteron within the generalized relativistic density functional approach is investigated. The zero temperature case is examined, where the deuteron fraction is given by the density of a boson condensate. For the first time, suitable parameterizations of the cluster mass shift at zero temperature are derived for all baryon densities. They are constrained by experimental results for the effective deuteron fraction in nuclear matter near saturation and by microscopic many-body calculations in the low-density limit. A proper description of well-constrained nuclear matter quantities at saturation is kept through a refit of the nucleon meson coupling strengths. The proposed parameterizations allow to also determine the density dependence of the quasi-deuteron mass fraction at arbitrary isospin asymmetries. The strength of the deuteron-meson couplings is assessed to be of crucial importance. Novel effects on some thermodynamic quantities, such as the matter incompressibility, the symmetry energy and its slope, are finally discerned and discussed. The findings of the present study represent a first step to improve the description of nuclear matter and its EoS at supra-saturation densities in EDFs by considering correlations in an effective way. In a next step, the single-particle momentum distributions in nuclear matter can be explored using proper wave functions of the quasi-deuteron in the medium. The momentum distributions are expected to exhibit a high-momentum tail, as observed in the experimental study of SRCs by nucleon knockout with high-energy electrons. This will be studied in a forthcoming publication with an extensive presentation of the theoretical method and the results. 
    more » « less