skip to main content


Search for: All records

Creators/Authors contains: "Burrows, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dominant shapes naturally emerge in atomic nuclei from first principles, thereby establishing the shape-preserving symplectic Sp(3,\mathbb{R}) symmetry as remarkably ubiquitous and almost perfect symmetry in nuclei. We discuss the critical role of this emergent symmetry in enabling machine-learning descriptions of heavy nuclei, ab initio modeling of\alphaαclustering and collectivity, as well as tests of beyond-the-standard-model physics. In addition, the Sp(3,\mathbb{R}) and SU(3) symmetries provide relevant degrees of freedom that underpin the ab initio symmetry-adapted no-core shell model with the remarkable capability of reaching nuclei and reaction fragments beyond the lightest and close-to-spherical species.

     
    more » « less
    Free, publicly-accessible full text available November 23, 2024
  2. ABSTRACT Lantern bugs are amongst the largest of the jumping hemipteran bugs, with body lengths reaching 44 mm and masses reaching 0.7 g. They are up to 600 times heavier than smaller hemipterans that jump powerfully using catapult mechanisms to store energy. Does a similar mechanism also propel jumping in these much larger insects? The jumping performance of two species of lantern bugs (Hemiptera, Auchenorrhyncha, family Fulgoridae) from India and Malaysia was therefore analysed from high-speed videos. The kinematics showed that jumps were propelled by rapid and synchronous movements of both hind legs, with their trochantera moving first. The hind legs were 20–40% longer than the front legs, which was attributable to longer tibiae. It took 5–6 ms to accelerate to take-off velocities reaching 4.65 m s−1 in the best jumps by female Kalidasa lanata. During these jumps, adults experienced an acceleration of 77 g, required an energy expenditure of 4800 μJ and a power output of 900 mW, and exerted a force of 400 mN. The required power output of the thoracic jumping muscles was 21,000 W kg−1, 40 times greater than the maximum active contractile limit of muscle. Such a jumping performance therefore required a power amplification mechanism with energy storage in advance of the movement, as in their smaller relatives. These large lantern bugs are near isometrically scaled-up versions of their smaller relatives, still achieve comparable, if not higher, take-off velocities, and outperform other large jumping insects such as grasshoppers. 
    more » « less
  3. Abstract

    We review recent progress and motivate the need for further developments in nuclear optical potentials that are widely used in the theoretical analysis of nucleon elastic scattering and reaction cross sections. In regions of the nuclear chart away from stability, which represent a frontier in nuclear science over the coming decade and which will be probed at new rare-isotope beam facilities worldwide, there is a targeted need to quantify and reduce theoretical reaction model uncertainties, especially with respect to nuclear optical potentials. We first describe the primary physics motivations for an improved description of nuclear reactions involving short-lived isotopes, focusing on its benefits for fundamental science discoveries and applications to medicine, energy, and security. We then outline the various methods in use today to build optical potentials starting from phenomenological, microscopic, andab initiomethods, highlighting in particular, the strengths and weaknesses of each approach. We then discuss publicly-available tools and resources facilitating the propagation of recent progresses in the field to practitioners. Finally, we provide a set of open challenges and recommendations for the field to advance the fundamental science goals of nuclear reaction studies in the rare-isotope beam era. This paper is the outcome of the Facility for Rare Isotope Beams Theory Alliance (FRIB-TA) topical program ‘Optical Potentials in Nuclear Physics’ held in March 2022 at FRIB. Its content is non-exhaustive, was chosen by the participants and reflects their efforts related to optical potentials.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)