skip to main content


Search for: All records

Creators/Authors contains: "Cai, Y.-Z."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Photometric and spectroscopic data for two Low Luminosity Type IIP Supernovae (LL SNe IIP) 2020cxd and 2021aai are presented. SN 2020cxd was discovered 2 d after explosion at an absolute magnitude of Mr  = −14.02 ± 0.21 mag, subsequently settling on a plateau which lasts for ∼120 d. Through the luminosity of the late light curve tail, we infer a synthesized 56Ni mass of (1.8 ± 0.5) × 10−3 M⊙. During the early evolutionary phases, optical spectra show a blue continuum ($T\, \gt $8000 K) with broad Balmer lines displaying a P Cygni profile, while at later phases, Ca ii, Fe ii, Sc ii, and Ba ii lines dominate the spectra. Hydrodynamical modelling of the observables yields $R\, \simeq$ 575 R⊙ for the progenitor star, with Mej  = 7.5 M⊙ and $E\, \simeq$ 0.097 foe emitted during the explosion. This low-energy event originating from a low-mass progenitor star is compatible with both the explosion of a red supergiant (RSG) star and with an Electron Capture Supernova arising from a super asymptotic giant branch star. SN 2021aai reaches a maximum luminosity of Mr  = −16.57 ± 0.23 mag (correcting for AV = 1.92 mag), at the end of its remarkably long plateau (∼140 d). The estimated 56Ni mass is (1.4 ± 0.5) × 10−2 M⊙. The expansion velocities are compatible with those of other LL SNe IIP (few 103 km s−1). The physical parameters obtained through hydrodynamical modelling are $R\, \simeq$ 575 R⊙, Mej = 15.5 M⊙, and E = 0.4 foe. SN 2021aai is therefore interpreted as the explosion of an RSG, with properties that bridge the class of LL SNe IIP with standard SN IIP events. 
    more » « less
  2. We present photometric and spectroscopic data on three extragalactic luminous red novae (LRNe): AT 2018bwo , AT 2021afy , and AT 2021blu . AT 2018bwo was discovered in NGC 45 (at about 6.8 Mpc) a few weeks after the outburst onset. During the monitoring period, the transient reached a peak luminosity of 10 40 erg s −1 . AT 2021afy , hosted by UGC 10043 (∼49.2 Mpc), showed a double-peaked light curve, with the two peaks reaching a similar luminosity of 2.1(±0.6)×10 41 erg s −1 . Finally, for AT 2021blu in UGC 5829 (∼8.6 Mpc), the pre-outburst phase was well-monitored by several photometric surveys, and the object showed a slow luminosity rise before the outburst. The light curve of AT 2021blu was sampled with an unprecedented cadence until the object disappeared behind the Sun, and it was then recovered at late phases. The light curve of LRN AT 2021blu shows a double peak, with a prominent early maximum reaching a luminosity of 6.5 × 10 40 erg s −1 , which is half of that of AT 2021afy . The spectra of AT 2021afy and AT 2021blu display the expected evolution for LRNe: a blue continuum dominated by prominent Balmer lines in emission during the first peak, and a redder continuum consistent with that of a K-type star with narrow absorption metal lines during the second, broad maximum. The spectra of AT 2018bwo are markedly different, with a very red continuum dominated by broad molecular features in absorption. As these spectra closely resemble those of LRNe after the second peak, AT 2018bwo was probably discovered at the very late evolutionary stages. This would explain its fast evolution and the spectral properties compatible with that of an M-type star. From the analysis of deep frames of the LRN sites years before the outburst, and considerations of the light curves, the quiescent progenitor systems of the three LRNe were likely massive, with primaries ranging from about 13 M ⊙ for AT 2018bwo , to 14 −1 +4 M ⊙ for AT 2021blu , and over 40 M ⊙ for AT 2021afy . 
    more » « less
  3. ABSTRACT

    The ultraviolet (UV) and near-infrared (NIR) photometric and optical spectroscopic observations of SN 2020acat covering ∼250 d after explosion are presented here. Using the fast rising photometric observations, spanning from the UV to NIR wavelengths, a pseudo-bolometric light curve was constructed and compared to several other well-observed Type IIb supernovae (SNe IIb). SN 2020acat displayed a very short rise time reaching a peak luminosity of $\mathrm{{\rm Log}_{10}}(L) = 42.49 \pm 0.17 \, \mathrm{erg \, s^{-1}}$ in only ∼14.6 ± 0.3 d. From modelling of the pseudo-bolometric light curve, we estimated a total mass of 56Ni synthesized by SN 2020acat of MNi = 0.13 ± 0.03 M⊙, with an ejecta mass of Mej = 2.3 ± 0.4 M⊙ and a kinetic energy of Ek = 1.2 ± 0.3 × 1051 erg. The optical spectra of SN 2020acat display hydrogen signatures well into the transitional period (≳ 100 d), between the photospheric and the nebular phases. The spectra also display a strong feature around 4900  Å that cannot be solely accounted for by the presence of the Fe ii 5018 line. We suggest that the Fe ii feature was augmented by He i 5016 and possibly by the presence of N ii 5005. From both photometric and spectroscopic analysis, we inferred that the progenitor of SN 2020acat was an intermediate-mass compact star with an MZAMS of 15–20 M⊙.

     
    more » « less
  4. ABSTRACT

    SN 2018hti was a very nearby (z = 0.0614) superluminous supernova with an exceedingly bright absolute magnitude of −21.7 mag in r band at maximum. The densely sampled pre-maximum light curves of SN 2018hti show a slow luminosity evolution and constrain the rise time to ∼50 rest-frame d. We fitted synthetic light curves to the photometry to infer the physical parameters of the explosion of SN 2018hti for both the magnetar and the CSM-interaction scenarios. We conclude that one of two mechanisms could be powering the luminosity of SN 2018hti; interaction with ∼10 M⊙ of circumstellar material or a magnetar with a magnetic field of Bp∼ 1.3 × 1013 G, and initial period of Pspin∼ 1.8 ms. From the nebular spectrum modelling we infer that SN 2018hti likely results from the explosion of a ${\sim}40\, \mathrm{M}_\odot$ progenitor star.

     
    more » « less
  5. We present an observational study of the luminous red nova (LRN) AT 2021biy in the nearby galaxy NGC 4631. The field of the object was routinely imaged during the pre-eruptive stage by synoptic surveys, but the transient was detected only at a few epochs from ∼231 days before maximum brightness. The LRN outburst was monitored with unprecedented cadence both photometrically and spectroscopically. AT 2021biy shows a short-duration blue peak, with a bolometric luminosity of ∼1.6 × 10 41 erg s −1 , followed by the longest plateau among LRNe to date, with a duration of 210 days. A late-time hump in the light curve was also observed, possibly produced by a shell-shell collision. AT 2021biy exhibits the typical spectral evolution of LRNe. Early-time spectra are characterised by a blue continuum and prominent H emission lines. Then, the continuum becomes redder, resembling that of a K-type star with a forest of metal absorption lines during the plateau phase. Finally, late-time spectra show a very red continuum ( T BB  ≈ 2050 K) with molecular features (e.g., TiO) resembling those of M-type stars. Spectropolarimetric analysis indicates that AT 2021biy has local dust properties similar to those of V838 Mon in the Milky Way Galaxy. Inspection of archival Hubble Space Telescope data taken on 2003 August 3 reveals a ∼20 M ⊙ progenitor candidate with log ( L / L ⊙ ) = 5.0 dex and T eff  = 5900 K at solar metallicity. The above luminosity and colour match those of a luminous yellow supergiant. Most likely, this source is a close binary, with a 17–24 M ⊙ primary component. 
    more » « less
  6. null (Ed.)
    We present the results of our monitoring campaigns of the luminous red novae (LRNe) AT 2020hat in NGC 5068 and AT 2020kog in NGC 6106. The two objects were imaged (and detected) before their discovery by routine survey operations. They show a general trend of slow luminosity rise, lasting at least a few months. The subsequent major LRN outbursts were extensively followed in photometry and spectroscopy. The light curves present an initial short-duration peak, followed by a redder plateau phase. AT 2020kog is a moderately luminous event peaking at ∼7 × 10 40 erg s −1 , while AT 2020hat is almost one order of magnitude fainter than AT 2020kog, although it is still more luminous than V838 Mon. In analogy with other LRNe, the spectra of AT 2020kog change significantly with time. They resemble those of type IIn supernovae at early phases, then they become similar to those of K-type stars during the plateau, and to M-type stars at very late phases. In contrast, AT 2020hat already shows a redder continuum at early epochs, and its spectrum shows the late appearance of molecular bands. A moderate-resolution spectrum of AT 2020hat taken at +37 d after maximum shows a forest of narrow P Cygni lines of metals with velocities of 180 km s −1 , along with an H α emission with a full-width at half-maximum velocity of 250 km s −1 . For AT 2020hat, a robust constraint on its quiescent progenitor is provided by archival images of the Hubble Space Telescope. The progenitor is clearly detected as a mid-K type star, with an absolute magnitude of M F 606 W  = −3.33 ± 0.09 mag and a colour of F 606 W  −  F 814 W  = 1.14 ± 0.05 mag, which are inconsistent with the expectations from a massive star that could later produce a core-collapse supernova. Although quite peculiar, the two objects nicely match the progenitor versus light curve absolute magnitude correlations discussed in the literature. 
    more » « less
  7. We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between −11.5 and −14.5 mag. Their pseudo-bolometric light curves peak in the range 0.5–9.0 × 10 40  erg s −1 and their total radiated energies are on the order of (0.3–3) × 10 47 erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the 56 Co decay. If the late-time power source is indeed radioactive decay, these transients produce 56 Ni masses on the order of 10 −4 to 10 −3   M ⊙ . The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km s −1 , along with Ca II features. In particular, the [Ca  II ] λ 7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events. 
    more » « less