skip to main content


Search for: All records

Creators/Authors contains: "Calcaferro, Leila M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the discovery of pulsations in the extremely low-mass (ELM), likely helium-core white dwarf GD 278 via ground- and space-based photometry. GD 278 was observed by the Transiting Exoplanet Survey Satellite (TESS) in Sector 18 at a 2 minute cadence for roughly 24 days. The TESS data reveal at least 19 significant periodicities between 2447 and 6729 s, one of which is the longest pulsation period ever detected in a white dwarf. Previous spectroscopy found that this white dwarf is in a 4.61 hr orbit with an unseen >0.4 M ⊙ companion and has T eff = 9230 ± 100 K and log g = 6.627 ± 0.056 , which corresponds to a mass of 0.191 ± 0.013 M ⊙ . Patterns in the TESS pulsation frequencies from rotational splittings appear to reveal a stellar rotation period of roughly 10 hr, making GD 278 the first ELM white dwarf with a measured rotation rate. The patterns inform our mode identification for asteroseismic fits, which, unfortunately, do not reveal a global best-fit solution. Asteroseismology reveals two main solutions roughly consistent with the spectroscopic parameters of this ELM white dwarf, but with vastly different hydrogen-layer masses; future seismic fits could be further improved by using the stellar parallax. GD 278 is now the tenth known pulsating ELM white dwarf; it is only the fifth known to be in a short-period binary, but is the first with extended, space-based photometry. 
    more » « less
  2. null (Ed.)
    Context. Before reaching their quiescent terminal white-dwarf cooling branch, some low-mass helium-core white dwarf stellar models experience a number of nuclear flashes which greatly reduce their hydrogen envelopes. Just before the occurrence of each flash, stable hydrogen burning may be able to drive global pulsations that could be relevant in shedding some light on the internal structure of these stars through asteroseismology, similarly to what occurs with other classes of pulsating white dwarfs. Aims. We present a pulsational stability analysis applied to low-mass helium-core stars on their early white-dwarf cooling branches going through CNO flashes in order to study the possibility that the ε mechanism is able to excite gravity-mode pulsations. We assess the ranges of unstable periods and the corresponding instability domain in the log g  −  T eff plane. Methods. We carried out a nonadiabatic pulsation analysis for low-mass helium-core white-dwarf models with stellar masses between 0.2025 and 0.3630  M ⊙ going through CNO flashes during their early cooling phases. Results. We found that the ε mechanism due to stable hydrogen burning can excite low-order ( ℓ  = 1, 2) gravity modes with periods between ∼80 and 500 s for stars with 0.2025 ≲  M ⋆ / M ⊙  ≲ 0.3630 located in an extended region of the log g  −  T eff diagram, with effective temperature and surface gravity in the ranges 15 000 ≲  T eff  ≲ 38 000 K and 5.8 ≲ log g  ≲ 7.1, respectively. For the sequences that experience multiple CNO flashes, we found that with every consecutive flash, the region of instability becomes wider and the modes are more strongly excited. The magnitudes of the rate of period change for these modes are in the range of ∼10 −10 –10 −11  [s/s]. Conclusions. Since the timescales required for these modes to reach amplitudes large enough to be observable are shorter than their corresponding evolutionary timescales, the detection of pulsations in these stars is feasible. Given the current problems in distinguishing some stars that populate the same region of the log g  −  T eff plane, the eventual detection of short-period pulsations may help in the classification of such stars. Furthermore, if a low-mass white dwarf star were found to pulsate with low-order gravity modes in this region of instability, it would confirm our result that such pulsations can be driven by the ε mechanism. In addition, confirming a rapid rate of period change in these pulsations would support the idea that these stars actually experience CNO flashes, as has been predicted by evolutionary calculations. 
    more » « less
  3. Context. The possible existence of warm ( T eff  ∼ 19 000 K) pulsating DA white dwarf (WD) stars, hotter than ZZ Ceti stars, was predicted in theoretical studies more than 30 yr ago. These studies reported the occurrence of g -mode pulsational instabilities due to the κ mechanism acting in the partial ionization zone of He below the H envelope in models of DA WDs with very thin H envelopes ( M H / M ⋆  ≲ 10 −10 ). However, to date, no pulsating warm DA WD has been discovered, despite the varied theoretical and observational evidence suggesting that a fraction of WDs should be formed with a range of very low H content. Aims. We re-examine the pulsational predictions for such WDs on the basis of new full evolutionary sequences. We analyze all the warm DAs observed by the TESS satellite up to Sector 9 in order to search for the possible pulsational signal. Methods. We computed WD evolutionary sequences of masses 0.58 and 0.80 M ⊙ with H content in the range −14.5 ≲ log( M H / M ⋆ )≲ − 10, appropriate for the study of pulsational instability of warm DA WDs. Initial models were extracted from progenitors that were evolved through very late thermal pulses on the early cooling branch. We use LPCODE stellar code into which we have incorporated a new full-implicit treatment of time-dependent element diffusion to precisely model the H–He transition zone in evolving WD models with very low H content. The nonadiabatic pulsations of our warm DA WD models were computed in the effective temperature range of 30 000 − 10 000 K, focusing on ℓ = 1 g modes with periods in the range 50 − 1500 s. Results. We find that traces of H surviving the very late thermal pulse float to the surface, eventually forming thin, growing pure H envelopes and rather extended H–He transition zones. We find that such extended transition zones inhibit the excitation of g modes due to partial ionization of He below the H envelope. Only in the cases where the H–He transition is assumed much more abrupt than predicted by diffusion do models exhibit pulsational instability. In this case, instabilities are found only in WD models with H envelopes in the range of −14.5 ≲ log( M H / M ⋆ )≲ − 10 and at effective temperatures higher than those typical for ZZ Ceti stars, in agreement with previous studies. None of the 36 warm DAs observed so far by TESS satellite are found to pulsate. Conclusions. Our study suggests that the nondetection of pulsating warm DAs, if WDs with very thin H envelopes do exist, could be attributed to the presence of a smooth and extended H–He transition zone. This could be considered as indirect proof that element diffusion indeed operates in the interior of WDs. 
    more » « less
  4. Context. Pulsation frequencies reveal the interior structures of white dwarf stars, shedding light on the properties of these compact objects that represent the final evolutionary stage of most stars. Two-minute cadence photometry from the Transiting Exoplanet Survey Satellite (TESS) records pulsation signatures from bright white dwarfs over the entire sky. Aims. As part of a series of first-light papers from TESS Asteroseismic Science Consortium Working Group 8, we aim to demonstrate the sensitivity of TESS data, by measuring pulsations of helium-atmosphere white dwarfs in the DBV instability strip, and what asteroseismic analysis of these measurements can reveal about their stellar structures. We present a case study of the pulsating DBV WD 0158−160 that was observed as TIC 257459955 with the two-minute cadence for 20.3 days in TESS Sector 3. Methods. We measured the frequencies of variability of TIC 257459955 with an iterative periodogram and prewhitening procedure. The measured frequencies were compared to calculations from two sets of white dwarf models to constrain the stellar parameters: the fully evolutionary models from LPCODE and the structural models from WDEC . Results. We detected and measured the frequencies of nine pulsation modes and eleven combination frequencies of WD 0158−160 to ∼0.01  μ Hz precision. Most, if not all, of the observed pulsations belong to an incomplete sequence of dipole (ℓ = 1) modes with a mean period spacing of 38.1 ± 1.0 s. The global best-fit seismic models from both LPCODE and WDEC have effective temperatures that are ≳3000 K hotter than archival spectroscopic values of 24 100–25 500 K; however, cooler secondary solutions are found that are consistent with both the spectroscopic effective temperature and distance constraints from Gaia astrometry. Conclusions. Our results demonstrate the value of the TESS data for DBV white dwarf asteroseismology. The extent of the short-cadence photometry enables reliably accurate and extremely precise pulsation frequency measurements. Similar subsets of both the LPCODE and WDEC models show good agreement with these measurements, supporting that the asteroseismic interpretation of DBV observations from TESS is not dominated by the set of models used. However, given the sensitivity of the observed set of pulsation modes to the stellar structure, external constraints from spectroscopy and/or astrometry are needed to identify the best seismic solutions. 
    more » « less