skip to main content


Search for: All records

Creators/Authors contains: "Cao, Yulong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In Autonomous Driving (AD) systems, perception is both security and safety critical. Despite various prior studies on its security issues, all of them only consider attacks on cameraor LiDAR-based AD perception alone. However, production AD systems today predominantly adopt a Multi-Sensor Fusion (MSF) based design, which in principle can be more robust against these attacks under the assumption that not all fusion sources are (or can be) attacked at the same time. In this paper, we present the first study of security issues of MSF-based perception in AD systems. We directly challenge the basic MSF design assumption above by exploring the possibility of attacking all fusion sources simultaneously. This allows us for the first time to understand how much security guarantee MSF can fundamentally provide as a general defense strategy for AD perception. We formulate the attack as an optimization problem to generate a physically-realizable, adversarial 3D-printed object that misleads an AD system to fail in detecting it and thus crash into it. To systematically generate such a physical-world attack, we propose a novel attack pipeline that addresses two main design challenges: (1) non-differentiable target camera and LiDAR sensing systems, and (2) non-differentiable cell-level aggregated features popularly used in LiDAR-based AD perception. We evaluate our attack on MSF algorithms included in representative open-source industry-grade AD systems in real-world driving scenarios. Our results show that the attack achieves over 90% success rate across different object types and MSF algorithms. Our attack is also found stealthy, robust to victim positions, transferable across MSF algorithms, and physical-world realizable after being 3D-printed and captured by LiDAR and camera devices. To concretely assess the end-to-end safety impact, we further perform simulation evaluation and show that it can cause a 100% vehicle collision rate for an industry-grade AD system. We also evaluate and discuss defense strategies. 
    more » « less
  2. null (Ed.)
    Autonomous vehicle (AV) software systems are emerging to enable rapidly developed self-driving functionalities. Since such systems are responsible for safety-critical decisions, it is necessary to secure them in face of cyber attacks. Through an empirical study of representative AV software systems Baidu Apollo and Autoware, we discover a common over-privilege problem with the publish-subscribe communication model widely adopted by AV systems: due to the coarse-grained message design for the publish-subscribe communication, some message fields are over-granted with publish/subscribe permissions. To comply with the least-privilege principle and reduce the attack surface resulting from such problem, we argue that the publish/subscribe permissions should be defined and enforced at the granularity of message fields instead of messages. To systematically address such publish-subscribe over-privilege problems, we present AVGuardian, a system that includes (1) a static analysis tool that detects over-privilege instances in AV software and generates the corresponding access control policies at the message field granularity, and (2) a low-overhead, module-transparent, runtime publish/subscribe permission policy enforcement mechanism to perform online policy violation detection and prevention. Using our detection tool, we are able to automatically detect 581 over-privilege instances in total in Baidu Apollo. To demonstrate the severity, we further constructed several concrete exploits that can lead to vehicle collision and identity theft for AV owners, which have been reported to Baidu Apollo and confirmed as valid. For defense, we prototype and evaluate the policy enforcement mechanism, and find that it has very low overhead, does not affect original AV decision logic, and also is resilient to message replay attacks. 
    more » « less