skip to main content


Search for: All records

Creators/Authors contains: "Caprioli, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Cosmic rays (CRs) are thought to escape their sources streaming along the local magnetic field lines. We show that this phenomenon generally leads to the excitation of both resonant and non-resonant streaming instabilities. The self-generated magnetic fluctuations induce particle diffusion in extended regions around the source, so that CRs build up a large pressure gradient. By means of two-dimensional (2D) and three-dimensional (3D) hybrid particle-in-cell simulations, we show that such a pressure gradient excavates a cavity around the source and leads to the formation of a cosmic ray dominated bubble, inside which diffusivity is strongly suppressed. Based on the trends extracted from self-consistent simulations, we estimate that, in the absence of severe damping of the self-generated magnetic fields, the bubble should keep expanding until pressure balance with the surrounding medium is reached, corresponding to a radius of ∼10–50 pc. The implications of the formation of these regions of low diffusivity for sources of Galactic CRs are discussed. Special care is devoted to estimating the self-generated diffusion coefficient and the grammage that CRs might accumulate in the bubbles before moving into the interstellar medium. Based on the results of 3D simulations, general considerations on the morphology of the γ-ray and synchrotron emission from these extended regions also are outlined.

     
    more » « less
  2. null (Ed.)
    Context. The spectrum of cosmic ray protons and electrons released by supernova remnants throughout their evolution is poorly known because of the difficulty in accounting for particle escape and confinement downstream of a shock front, where both adiabatic and radiative losses are present. Since electrons lose energy mainly through synchrotron losses, it is natural to ask whether the spectrum released into the interstellar medium may be different from that of their hadronic counterpart. Independent studies of cosmic ray transport through the Galaxy require that the source spectrum of electrons and protons be very different. Therefore, the above question acquires a phenomenological relevance. Aims. Here we calculate the spectrum of cosmic ray protons released during the evolution of supernovae of different types, accounting for the escape from the upstream region and for adiabatic losses of particles advected downstream of the shock and liberated at later times. The same calculation is carried out for electrons, where in addition to adiabatic losses we take the radiative losses suffered behind the shock into account. These electrons are dominated by synchrotron losses in the magnetic field, which most likely is self-generated by cosmic rays accelerated at the shock. Methods. We use standard temporal evolution relations for supernova shocks expanding in different types of interstellar media together with an analytic description of particle acceleration and magnetic field amplification to determine the density and spectrum of cosmic ray particles. Their evolution in time is derived by numerically solving the equation describing advection with adiabatic and radiative losses for electrons and protons. The flux from particles continuously escaping the supernova remnants is also accounted for. Results. The magnetic field in the post-shock region is calculated by using an analytic treatment of the magnetic field amplification due to nonresonant and resonant streaming instability and their saturation. The resulting field is compared with the available set of observational results concerning the dependence of the magnetic field strength upon shock velocity. We find that when the field is the result of the growth of the cosmic-ray-driven nonresonant instability alone, the spectrum of electrons and protons released by a supernova remnant are indeed different; however, such a difference becomes appreciable only at energies ≳100−1000 GeV, while observations of the electron spectrum require such a difference to be present at energies as low as ∼10 GeV. An effect at such low energies requires substantial magnetic field amplification in the late stages of supernova remnant evolution (shock velocity ≪1000 km s −1 ); this may not be due to streaming instability but rather hydrodynamical processes. We comment on the feasibility of such conditions and speculate on the possibility that the difference in spectral shape between electrons and protons may reflect either some unknown acceleration effect or additional energy losses in cocoons around the sources. 
    more » « less
  3. null (Ed.)
  4. Using hybrid simulations (kinetic ions--fluid electrons), we test the linear theory predictions of the cosmic ray (CR) streaming instability. We consider two types of CR distribution functions: a "hot" distribution where CRs are represented by a drifting power law in momentum and an anisotropic "beam" of monochromatic particles. Additionally, for each CR distribution we scan over different CR densities to transition from triggering the resonant to the non-resonant (Bell) streaming instability. We determine the growth rates of these instabilities in simulations by fitting an exponential curve during the linear stage, and we show that they agree well with the theoretical predictions as a function of wave number agree. We also examine the magnetic helicity as a function of time and wave number, finding a general good agreement with the predictions, as well as some unexpected non-linear features to the instability development. 
    more » « less
  5. The nonresonant cosmic ray instability, predicted by Bell (2004), is thought to play an important role in the acceleration and confinement of cosmic rays (CRs) close to supernova remnants. Despite its importance, the exact mechanism responsible for the saturation of the instability has not been determined, and there is no first-principle prediction for the amplitude of the saturated magnetic field. Using a survey of self-consistent kinetic hybrid simulations (with kinetic ions and fluid electrons), we study the saturation of the non-resonant streaming instability as a function of the parameters of both the thermal background plasma and the CR population. The strength of the saturated magnetic field has important implications for both CR acceleration in supernova remnants and CR diffusion in the Galaxy. 
    more » « less