skip to main content


Search for: All records

Creators/Authors contains: "Carter, Rich G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Promotion and tenure (P&T) remain the central tenets of academia. The criteria for P&T both create and reflect the mission of an institution. The discipline of biomedical engineering is built upon the invention and translation of tools to address unmet clinical needs. ‘Broadening the bar’ for P&T to include efforts in innovation, entrepreneurship, and technology-based transfer (I/E/T) will require establishing the criteria and communication of methodology for their evaluation. We surveyed the department chairs across the fields of biomedical and bioengineering to understand the state-of-the-art in incorporation, evaluation, and definition of I/E/T as applied to the P&T process. The survey results reflected a commitment to increasing and respecting I/E/T activities as part of the P&T criteria. This was balanced by an equally strong desire for improving the education and policy for evaluating I/E/T internally as well as externally. The potential for ‘broadening the bar’ for P&T to include I/E/T activities in biomedical engineering may serve as an example for other fields in engineering and applied sciences, and a template for potential inclusion of additional efforts such as diversity, equity, and inclusion (DEI) into the pillars of scholarship, education, and service. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. null (Ed.)
  3. Abstract

    This Minireview is focused on an in‐depth discussion of comparative strategies to construct the gelsemine and gelsedine classes of the gelsemium alkaloids. This document highlights the diversity of strategies used to access specific motifs found within these targets: a) the fused “[3.2.1]bicycle” (in gelsemine) and “oxabicycle” (in gelsedine class); b) the “piroxindole” moiety with C7 quaternary center; c) the “N‐heterocycles” and d) the “THP” moiety with C20 quaternary center (in gelsemine).

     
    more » « less
  4. Abstract

    The efficient, 12–14 step (LLS) total synthesis of (−)‐halenaquinone has been achieved. Key steps in the synthetic sequence include: (a) proline sulfonamide‐catalyzed, Yamada–Otani reaction to establish the C6 all‐carbon quaternary stereocenter, (b) multiple, novel palladium‐mediated oxidative cyclizations to introduce the furan moiety, and (c) oxidative Bergman cyclization to form the final quinone ring.

     
    more » « less
  5. Abstract

    The efficient, 12–14 step (LLS) total synthesis of (−)‐halenaquinone has been achieved. Key steps in the synthetic sequence include: (a) proline sulfonamide‐catalyzed, Yamada–Otani reaction to establish the C6 all‐carbon quaternary stereocenter, (b) multiple, novel palladium‐mediated oxidative cyclizations to introduce the furan moiety, and (c) oxidative Bergman cyclization to form the final quinone ring.

     
    more » « less