skip to main content


Search for: All records

Creators/Authors contains: "Casares, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Low-mass X-ray binaries have long been theorized as potential sources of continuous gravitational-wave radiation, yet there is no observational evidence from recent LIGO/Virgo observing runs. Even for the theoretically ‘loudest’ source, Sco X-1, the upper limit on gravitational-wave strain has been pushed ever lower. Such searches require precise measurements of the source properties for sufficient sensitivity and computational feasibility. Collating over 20 yr of high-quality spectroscopic observations of the system, we present a precise and comprehensive ephemeris for Sco X-1 through radial velocity measurements, performing a full homogeneous re-analysis of all relevant data sets and correcting previous analyses. Our Bayesian approach accounts for observational systematics and maximizes not only precision, but also the fidelity of uncertainty estimates – crucial for informing principled continuous-wave searches. Our extensive data set and analysis also enables us to construct the highest signal-to-noise ratio, highest resolution phase-averaged spectrum of a low-mass X-ray binary to date. Doppler tomography reveals intriguing transient structures present in the accretion disc and flow driven by modulation of the accretion rate, necessitating further characterization of the system at high temporal and spectral resolution. Our ephemeris corrects and supersedes previous ephemerides, and provides a factor three reduction in the number of templates in the search space, facilitating precision searches for continuous gravitational-wave emission from Sco X-1 throughout the upcoming LIGO/Virgo/KAGRA O4 observing run and beyond.

     
    more » « less
  2. Abstract On 2019 August 14 at 21:10:39 UTC, the LIGO/Virgo Collaboration (LVC) detected a possible neutron star–black hole merger (NSBH), the first ever identified. An extensive search for an optical counterpart of this event, designated GW190814, was undertaken using the Dark Energy Camera on the 4 m Victor M. Blanco Telescope at the Cerro Tololo Inter-American Observatory. Target of Opportunity interrupts were issued on eight separate nights to observe 11 candidates using the 4.1 m Southern Astrophysical Research (SOAR) telescope’s Goodman High Throughput Spectrograph in order to assess whether any of these transients was likely to be an optical counterpart of the possible NSBH merger. Here, we describe the process of observing with SOAR, the analysis of our spectra, our spectroscopic typing methodology, and our resultant conclusion that none of the candidates corresponded to the gravitational wave merger event but were all instead other transients. Finally, we describe the lessons learned from this effort. Application of these lessons will be critical for a successful community spectroscopic follow-up program for LVC observing run 4 (O4) and beyond. 
    more » « less
  3. null (Ed.)