skip to main content


Search for: All records

Creators/Authors contains: "Casey, C. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    This paper presents the results of 475h of interferometric observations with the Australia Telescope Compact Array towards the Spiderweb protocluster at z=2.16. We search for large, extended molecular gas reservoirs among 46 previously detected CO(1−0) emitters, employing a customised method we developed. Based on the CO emission images and position–velocity diagrams, as well as the ranking of sources using a binary weighting of six different criteria, we have identified 14 robust and 7 tentative candidates that exhibit large extended molecular gas reservoirs. These extended reservoirs are defined as having sizes greater than 40 kpc or supergalactic scale. This result suggests a high frequency of extended gas reservoirs, comprising at least 30 percent of our CO-selected sample. An environmental study of the candidates is carried out based on Nth nearest neighbour and we find that the large molecular gas reservoirs tend to exist in denser regions. The spatial distribution of our candidates is mainly centred on the core region of the Spiderweb protocluster. The performance and adaptability of our method are discussed. We found 13 (potentially) extended gas reservoirs located in eight galaxy (proto)clusters from the literature. We noticed that large extended molecular gas reservoirs surrounding (normal) star-forming galaxies in protoclusters are rare. This may be attributable to the lack of observations low-J CO transitions and the lack of quantitative analyses of molecular gas morphologies. The large gas reservoirs in the Spiderweb protocluster are potential sources of the intracluster medium seen in low redshift Virgo- or Coma-like galaxy clusters.

     
    more » « less
  2. null (Ed.)
  3. Abstract The Cosmic Evolution Survey (COSMOS) has become a cornerstone of extragalactic astronomy. Since the last public catalog in 2015, a wealth of new imaging and spectroscopic data have been collected in the COSMOS field. This paper describes the collection, processing, and analysis of these new imaging data to produce a new reference photometric redshift catalog. Source detection and multiwavelength photometry are performed for 1.7 million sources across the 2 deg 2 of the COSMOS field, ∼966,000 of which are measured with all available broadband data using both traditional aperture photometric methods and a new profile-fitting photometric extraction tool, The Farmer , which we have developed. A detailed comparison of the two resulting photometric catalogs is presented. Photometric redshifts are computed for all sources in each catalog utilizing two independent photometric redshift codes. Finally, a comparison is made between the performance of the photometric methodologies and of the redshift codes to demonstrate an exceptional degree of self-consistency in the resulting photometric redshifts. The i < 21 sources have subpercent photometric redshift accuracy and even the faintest sources at 25 < i < 27 reach a precision of 5%. Finally, these results are discussed in the context of previous, current, and future surveys in the COSMOS field. Compared to COSMOS2015, it reaches the same photometric redshift precision at almost one magnitude deeper. Both photometric catalogs and their photometric redshift solutions and physical parameters will be made available through the usual astronomical archive systems (ESO Phase 3, IPAC-IRSA, and CDS). 
    more » « less