skip to main content


Search for: All records

Creators/Authors contains: "Caylor, Kelly"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Efficiently managing agricultural irrigation is vital for food security today and into the future under climate change. Yet, evaluating agriculture’s hydrological impacts and strategies to reduce them remains challenging due to a lack of field-scale data on crop water consumption. Here, we develop a method to fill this gap using remote sensing and machine learning, and leverage it to assess water saving strategies in California’s Central Valley. We find that switching to lower water intensity crops can reduce consumption by up to 93%, but this requires adopting uncommon crop types. Northern counties have substantially lower irrigation efficiencies than southern counties, suggesting another potential source of water savings. Other practices that do not alter land cover can save up to 11% of water consumption. These results reveal diverse approaches for achieving sustainable water use, emphasizing the potential of sub-field scale crop water consumption maps to guide water management in California and beyond.

     
    more » « less
  2. Abstract

    Groundwater is critical for many ecosystems, yet groundwater requirements for dependent ecosystems are rarely accounted for during water and conservation planning. Here we compile 38 years of Landsat-derived normalized difference vegetation index (NDVI) to evaluate groundwater-dependent vegetation responses to changes in depth to groundwater (DTG) across California. To maximize applicability, we standardized raw NDVI and DTG values usingZscores to identify groundwater thresholds, groundwater targets and map potential drought refugia across a diversity of biomes and local conditions. Groundwater thresholds were analysed for vegetation impacts whereZNDVIdropped below −1.ZDTGthresholds and targets were then evaluated with respect to groundwater-dependent vegetation in different condition classes and rooting depths.ZNDVIscores were applied statewide to identify potential drought refugia supported by groundwater. Our approach provides a simple and robust methodology for water and conservation practitioners to support ecosystem water needs so biodiversity and sustainable water-management goals can be achieved.

     
    more » « less
  3. Abstract

    Agricultural supply chains play a crucial role in supporting food security in Africa. However, high-resolution supply chain information is often not available, which hinders our ability to determine which interventions in food supply chains would most enhance food security. In this study, we develop a high-resolution supply chain model for essential staple crops in Zambia, aiming to estimate how improvements in transportation infrastructure would impact food security. Specifically, we simulate district-level monthly consumption, trade flows, and storage for maize and cassava in Zambia. We then conduct a counterfactual case study with low transportation costs, discovering that reducing transaction costs leads to higher aggregate net agricultural revenue and aggregate net expenditure. These results indicate that transportation investments are more beneficial to suppliers than to consumers, with implications for household food security in smallholder agriculture. Our study highlights the potential for infrastructure investments to improve food security.

     
    more » « less
  4. Free, publicly-accessible full text available October 1, 2024
  5. Free, publicly-accessible full text available August 1, 2024
  6. Abstract In dryland ecosystems, vegetation within different plant functional groups exhibits distinct seasonal phenologies that are affected by the prevailing hydroclimatic forcing. The seasonal variability of precipitation, atmospheric evaporative demand, and streamflow influences root-zone water availability to plants in water-limited environments. Increasing interannual variations in climate forcing of the local water balance and uncertainty regarding climate change projections have raised the potential for phenological shifts and changes to vegetation dynamics. This poses significant risks to plant functional types across large areas, especially in drylands and within riparian ecosystems. Due to the complex interactions between climate, water availability, and seasonal plant water use, the timing and amplitude of phenological responses to specific hydroclimate forcing cannot be determined a priori , thus limiting efforts to dynamically predict vegetation greenness under future climate change. Here, we analyze two decades (1994–2021) of remote sensing data (soil adjusted vegetation index (SAVI)) as well as contemporaneous hydroclimate data (precipitation, potential evapotranspiration, depth to groundwater, and air temperature), to identify and quantify the key hydroclimatic controls on the timing and amplitude of seasonal greenness. We focus on key phenological events across four different plant functional groups occupying distinct locations and rooting depths in dryland SE Arizona: semi-arid grasses and shrubs, xeric riparian terrace and hydric riparian floodplain trees. We find that key phenological events such as spring and summer greenness peaks in grass and shrubs are strongly driven by contributions from antecedent spring and monsoonal precipitation, respectively. Meanwhile seasonal canopy greenness in floodplain and terrace vegetation showed strong response to groundwater depth as well as antecedent available precipitation (aaP = P − PET) throughout reaches of perennial and intermediate streamflow permanence. The timings of spring green-up and autumn senescence were driven by seasonal changes in air temperature for all plant functional groups. Based on these findings, we develop and test a simple, empirical phenology model, that predicts the timing and amplitude of greenness based on hydroclimate forcing. We demonstrate the feasibility of the model by exploring simple, plausible climate change scenarios, which may inform our understanding of phenological shifts in dryland plant communities and may ultimately improve our predictive capability of investigating and predicting climate-phenology interactions in the future. 
    more » « less
  7. We propose a sensing system comprising a large network of tiny, battery-less, Radio Frequency (RF)-powered sensors that use backscatter communication. The sensors use an entirely passive technique to 'sense' the parameters of the wireless channel between themselves. Since the material properties influence RF channels, this fine-grain sensing can uncover multiple material properties both at a large scale and fine spatial resolution. In this paper, we study the feasibility of the proposed passive technique for monitoring parameters of material in which the sensors are embedded. We performed a set of experiments where the sensor-to-sensor wireless channel parameters are well-defined using physics-based modeling, and we compared the theoretical and experimentally obtained values. For some material parameters of interest, like humidity or strain, the relationship with the observed wireless channel parameters have to be modeled relying on data-driven approaches. The initial experiments show an observable difference in the sensor-to-sensor channel phase with variation in the applied weights. 
    more » « less
  8. null (Ed.)