skip to main content


Search for: All records

Creators/Authors contains: "Chang, Celesta S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The concept of remote epitaxy involves a two-dimensional van der Waals layer covering the substrate surface, which still enable adatoms to follow the atomic motif of the underlying substrate. The mode of growth must be carefully defined as defects, e.g., pinholes, in two-dimensional materials can allow direct epitaxy from the substrate, which, in combination with lateral epitaxial overgrowth, could also form an epilayer. Here, we show several unique cases that can only be observed for remote epitaxy, distinguishable from other two-dimensional material-based epitaxy mechanisms. We first grow BaTiO3on patterned graphene to establish a condition for minimizing epitaxial lateral overgrowth. By observing entire nanometer-scale nuclei grown aligned to the substrate on pinhole-free graphene confirmed by high-resolution scanning transmission electron microscopy, we visually confirm that remote epitaxy is operative at the atomic scale. Macroscopically, we also show variations in the density of GaN microcrystal arrays that depend on the ionicity of substrates and the number of graphene layers.

     
    more » « less
    Free, publicly-accessible full text available October 20, 2024
  2. We report the structural and electronic properties of NbN/GaN junctions grown by plasma-assisted molecular beam epitaxy. High crystal-quality NbN films grown on GaN exhibit superconducting critical temperatures in excess of 10 K for thicknesses as low as 3 nm. We observe that the NbN lattice adopts the stacking sequence of the underlying GaN and that domain boundaries in the NbN thereby occur at the site of atomic steps in the GaN surface. The electronic properties of the NbN/GaN junction are characterized using Schottky barrier diodes. Current–voltage–temperature and capacitance–voltage measurements are used to determine the Schottky barrier height of the NbN/GaN junction, which we conclude is ∼1.3 eV. 
    more » « less
  3. Beta-phase gallium oxide ([Formula: see text]-Ga 2 O 3 ) is a promising semiconductor for high frequency, high temperature, and high voltage applications. In addition to the [Formula: see text]-phase, numerous other polymorphs exist and understanding the competition between phases is critical to control practical devices. The phase formation sequence of Ga 2 O 3 , starting from amorphous thin films, was determined using lateral-gradient laser spike annealing at peak temperatures of 500–1400 °C on 400 μs to 10 ms timescales, with transformations characterized by optical microscopy, x-ray diffraction, and transmission electron microscopy (TEM). The resulting phase processing map showed the [Formula: see text]-phase, a defect-spinel structure, first nucleating under all annealing times for temperatures from 650 to 800 °C. The cross-sectional TEM at the onset of the [Formula: see text]-phase formation showed nucleation near the film center with no evidence of heterogeneous nucleation at the interfaces. For temperatures above 850 °C, the thermodynamically stable [Formula: see text]-phase was observed. For anneals of 1–4 ms and temperatures below 1200 °C, small randomly oriented grains were observed. Large grains were observed for anneals below 1 ms and above 1200 °C, with anneals above 4 ms and 1200 °C resulting in textured films. The formation of the [Formula: see text]-phase prior to [Formula: see text]-phase, coupled with the observed grain structure, suggests that the [Formula: see text]-phase is kinetically preferred during thermal annealing of amorphous films, with [Formula: see text]-phase subsequently forming by nucleation at higher temperatures. The low surface energy of the [Formula: see text]-phase implied by these results suggests an explanation for the widely observed [Formula: see text]-phase inclusions in [Formula: see text]-phase Ga 2 O 3 films grown by a variety of synthesis methods. 
    more » « less
  4. The electronic structure of heterointerfaces is a pivotal factor for their device functionality. We use soft x-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures on both sides of the Schottky heterointerface formed by epitaxial films of the superconducting NbN on semiconducting GaN, and determine their momentum-dependent interfacial band offset as well as the band-bending profile. We find, in particular, that the Fermi states in NbN are well separated in energy and momentum from the states in GaN, excluding any notable electronic cross-talk of the superconducting states in NbN to GaN. We support the experimental findings with first-principles calculations for bulk NbN and GaN. The Schottky barrier height obtained from photoemission is corroborated by electronic transport and optical measurements. The momentum-resolved understanding of electronic properties of interfaces elucidated in our work opens up new frontiers for the quantum materials where interfacial states play a defining role. 
    more » « less