skip to main content


Search for: All records

Creators/Authors contains: "Chard, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. COVID-19 had an unprecedented impact on scientific collaboration. The pandemic and its broad response from the scientific community has forged new relationships among domain experts, mathematical modelers, and scientific computing specialists. Computationally, however, it also revealed critical gaps in the ability of researchers to exploit advanced computing systems. These challenging areas include gaining access to scalable computing systems, porting models and workflows to new systems, sharing data of varying sizes, and producing results that can be reproduced and validated by others. Informed by our team’s work in supporting public health decision makers during the COVID-19 pandemic and by the identified capability gaps in applying high-performance computing (HPC) to the modeling of complex social systems, we present the goals, requirements, and initial implementation of OSPREY, an open science platform for robust epidemic analysis. The prototype implementation demonstrates an integrated, algorithm-driven HPC workflow architecture, coordinating tasks across federated HPC resources, with robust, secure and automated access to each of the resources. We demonstrate scalable and fault-tolerant task execution, an asynchronous API to support fast time-to-solution algorithms, an inclusive, multi-language approach, and efficient wide-area data management. The example OSPREY code is made available on a public repository. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. Personal cloud storage systems increasingly offer recommendations to help users retrieve or manage files of interest. For example, Google Drive's Quick Access predicts and surfaces files likely to be accessed. However, when multiple, related recommendations are made, interfaces typically present recommended files and any accompanying explanations individually, burdening users. To improve the usability of ML-driven personal information management systems, we propose a new method for summarizing related file-management recommendations. We generate succinct summaries of groups of related files being recommended. Summaries reference the files' shared characteristics. Through a within-subjects online study in which participants received recommendations for groups of files in their own Google Drive, we compare our summaries to baselines like visualizing a decision tree model or simply listing the files in a group. Compared to the baselines, participants expressed greater understanding and confidence in accepting recommendations when shown our novel recommendation summaries. 
    more » « less