skip to main content


Search for: All records

Creators/Authors contains: "Chasapis, Alexandros"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Magnetic reconnection and plasma turbulence are ubiquitous and key processes in the Universe. These two processes are suggested to be intrinsically related: magnetic reconnection can develop turbulence, and, in turn, turbulence can influence or excite magnetic reconnection. In this study, we report a rare and unique electron diffusion region (EDR) observed by the Magnetospheric Multiscale mission in the Earth’s magnetotail with significantly enhanced energetic particle fluxes. The EDR is in a region of strong turbulence within which the plasma density is dramatically depleted. We present three salient features. (1) Despite the turbulence, the EDR behaves nearly the same as that in 2D quasi-planar reconnection; the observations suggest that magnetic reconnection continues for several minutes. (2) The observed reconnection electric field and inferred energy transport are exceptionally large. However, the aspect ratio of the EDR (one definition of reconnection rate) is fairly typical. Instead, extraordinarily large-amplitude Hall electric fields appear to enable the strong energy transport. (3) We hypothesize that the high-energy transport rate, density depletion, and the strong particle acceleration are related to a near-runaway effect, which is due to the combination of low-plasma-density inflow (from lobes) and possible positive feedback between turbulence and reconnection. The detailed study on this EDR gives insight into the interplay between reconnection and turbulence, and the possible near-runaway effect, which may play an important role in other particle acceleration in astrophysical plasma.

     
    more » « less
  2. Abstract Magnetic reconnection is a fundamental plasma process that has been studied with analytical theory, numerical simulations, in situ observations, and laboratory experiments for decades. The models that have been established to describe magnetic reconnection often assume a reconnection plane normal to the current sheet in which an antiparallel magnetic field annihilates. The annihilation points, also known as the X-points, form an x -line, which is believed to be perpendicular to the reconnection plane. Recently, a new study using Magnetospheric Multiscale mission observations has challenged our understanding of magnetic reconnection by providing evidence that the x -line is not necessarily orthogonal to the reconnection plane. In this study we report a second nonorthogonal x -line event with similar features as that in the previous case study, supporting that the sheared x -line phenomenon is not an aberrant event. We employ a detailed directional derivative analysis to identify the x -line direction and show that the in-plane reconnection characteristics are well maintained even with a nonorthogonal x -line. In addition, we find the x -line tends to follow the magnetic field on one side of the current sheet, which suggests an asymmetry across the current sheet. We discuss the possibility that the nonorthogonal x -line arises from an interplay between the two aspects of reconnection: the macroscopic magnetic field topology and microscopic particle kinetics. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Abstract An important aspect of energy dissipation in weakly collisional plasmas is that of energy partitioning between different species (e.g., protons and electrons) and between different energy channels. Here we analyse pressure–strain interaction to quantify the fractions of isotropic compressive, gyrotropic, and nongyrotropic heating for each species. An analysis of kinetic turbulence simulations is compared and contrasted with corresponding observational results from Magnetospheric Multiscale Mission data in the magnetosheath. In assessing how protons and electrons respond to different ingredients of the pressure–strain interaction, we find that compressive heating is stronger than incompressive heating in the magnetosheath for both electrons and protons, while incompressive heating is stronger in kinetic plasma turbulence simulations. Concerning incompressive heating, the gyrotropic contribution for electrons is dominant over the nongyrotropic contribution, while for protons nongyrotropic heating is enhanced in both simulations and observations. Variations with plasma β are also discussed, and protons tend to gain more heating with increasing β . 
    more » « less
  4. null (Ed.)
    Unlike the vast majority of astrophysical plasmas, the solar wind is accessible to spacecraft, which for decades have carried in-situ instruments for directly measuring its particles and fields. Though such measurements provide precise and detailed information, a single spacecraft on its own cannot disentangle spatial and temporal fluctuations. Even a modest constellation of in-situ spacecraft, though capable of characterizing fluctuations at one or more scales, cannot fully determine the plasma’s 3-D structure. We describe here a concept for a new mission, the Magnetic Topology Reconstruction Explorer (MagneToRE), that would comprise a large constellation of in-situ spacecraft and would, for the first time, enable 3-D maps to be reconstructed of the solar wind’s dynamic magnetic structure. Each of these nanosatellites would be based on the CubeSat form-factor and carry a compact fluxgate magnetometer. A larger spacecraft would deploy these smaller ones and also serve as their telemetry link to the ground and as a host for ancillary scientific instruments. Such an ambitious mission would be feasible under typical funding constraints thanks to advances in the miniaturization of spacecraft and instruments and breakthroughs in data science and machine learning. 
    more » « less