skip to main content


Search for: All records

Creators/Authors contains: "Chaudhry, Jehanzeb H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Domain decomposition methods are widely used for the numerical solution of partial differential equations on high performance computers. We develop an adjoint-based a posteriori error analysis for both multiplicative and additive overlapping Schwarz domain decomposition methods. The numerical error in a user-specified functional of the solution (quantity of interest) is decomposed into contributions that arise as a result of the finite iteration between the subdomains and from the spatial discretization. The spatial discretization contribution is further decomposed into contributions arising from each subdomain. This decomposition of the numerical error is used to construct a two stage solution strategy that efficiently reduces the error in the quantity of interest by adjusting the relative contributions to the error. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    The Poisson‐Boltzmann equation is a widely used model to study electrostatics in molecular solvation. Its numerical solution using a boundary integral formulation requires a mesh on the molecular surface only, yielding accurate representations of the solute, which is usually a complicated geometry. Here, we utilize adjoint‐based analyses to form two goal‐oriented error estimates that allow us to determine the contribution of each discretization element (panel) to the numerical error in the solvation free energy. This information is useful to identify high‐error panels to then refine them adaptively to find optimal surface meshes. We present results for spheres and real molecular geometries, and see that elements with large error tend to be in regions where there is a high electrostatic potential. We also find that even though both estimates predict different total errors, they have similar performance as part of an adaptive mesh refinement scheme. Our test cases suggest that the adaptive mesh refinement scheme is very effective, as we are able to reduce the error one order of magnitude by increasing the mesh size less than 20% and come out to be more efficient than uniform refinement when computing error estimations. This result sets the basis toward efficient automatic mesh refinement schemes that produce optimal meshes for solvation energy calculations.

     
    more » « less