skip to main content


Search for: All records

Creators/Authors contains: "Chauvin, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With$$40\,\textrm{t}$$40tof liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($$0\upnu \upbeta \upbeta $$0νββ), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of$${}^{137}$$137Xe, the most crucial isotope in the search for$$0\upnu \upbeta \upbeta $$0νββof$${}^{136}$$136Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background.

     
    more » « less
  2. Abstract Understanding propagation of scintillation light is critical for maximizing the discovery potential of next-generation liquid xenon detectors that use dual-phase time projection chamber technology. This work describes a detailed optical simulation of the DARWIN detector implemented using Chroma, a GPU-based photon tracking framework. To evaluate the framework and to explore ways of maximizing efficiency and minimizing the time of light collection, we simulate several variations of the conventional detector design. Results of these selected studies are presented. More generally, we conclude that the approach used in this work allows one to investigate alternative designs faster and in more detail than using conventional Geant4 optical simulations, making it an attractive tool to guide the development of the ultimate liquid xenon observatory. 
    more » « less
  3. Free, publicly-accessible full text available May 1, 2024
  4. Abstract

    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.

     
    more » « less
  5. Abstract This article reports on the inclusive production cross section of several quarkonium states, $$\textrm{J}/\psi $$ J / ψ , $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) , $$\Upsilon \mathrm (1S)$$ Υ ( 1 S ) , $$\Upsilon \mathrm{(2S)}$$ Υ ( 2 S ) , and $$\Upsilon \mathrm{(3S)}$$ Υ ( 3 S ) , measured with the ALICE detector at the LHC, in pp collisions at $$\sqrt{s} = 5.02$$ s = 5.02  TeV. The analysis is performed in the dimuon decay channel at forward rapidity ( $$2.5< y < 4$$ 2.5 < y < 4 ). The integrated cross sections and transverse-momentum ( $$p_{\textrm{T}}$$ p T ) and rapidity ( $$y$$ y ) differential cross sections for $$\textrm{J}/\psi $$ J / ψ , $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) , $$\Upsilon \mathrm (1S)$$ Υ ( 1 S ) , and the $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) -to- $$\textrm{J}/\psi $$ J / ψ cross section ratios are presented. The integrated cross sections, assuming unpolarized quarkonia, are: $$\sigma _{\textrm{J}/\psi }$$ σ J / ψ  ( $$p_{\textrm{T}} <20$$ p T < 20  GeV/c) = 5.88 ± 0.03 ± 0.34 $$ ~\mu $$ μ b, $$\sigma _{\psi \mathrm{(2S)}}$$ σ ψ ( 2 S )  ( $$p_{\textrm{T}} <12$$ p T < 12  GeV/c) = 0.87 ± 0.06 ± 0.10 $$~\mu $$ μ b, $$\sigma _{\Upsilon \mathrm (1S)}$$ σ Υ ( 1 S )  ( $$p_{\textrm{T}} <15$$ p T < 15  GeV/c) = 45.5 ± 3.9 ± 3.5 nb, $$\sigma _{\Upsilon \mathrm{(2S)}}$$ σ Υ ( 2 S )  ( $$p_{\textrm{T}} <15$$ p T < 15  GeV/c) = 22.4 ± 3.2 ± 2.7 nb, and $$\sigma _{\Upsilon \mathrm{(3S)}}$$ σ Υ ( 3 S )  ( $$p_{\textrm{T}} <15$$ p T < 15  GeV/c) = 4.9 ± 2.2 ± 1.0 nb, where the first (second) uncertainty is the statistical (systematic) one. For the first time, the cross sections of the three $$\Upsilon $$ Υ states, as well as the $$\psi \mathrm{(2S)}$$ ψ ( 2 S ) one as a function of $$p_{\textrm{T}}$$ p T and $$y$$ y , are measured at $$\sqrt{s} = 5.02$$ s = 5.02  TeV at forward rapidity. These measurements also significantly extend the $$\textrm{J}/\psi $$ J / ψ $$p_{\textrm{T}}$$ p T reach and supersede previously published results. A comparison with ALICE measurements in pp collisions at $$\sqrt{s} = 2.76$$ s = 2.76 , 7, 8, and 13 TeV is presented and the energy dependence of quarkonium production cross sections is discussed. Finally, the results are compared with the predictions from several production models. 
    more » « less
  6. A bstract The energy deposited at very forward rapidities (very forward energy) is a powerful tool for characterising proton fragmentation in pp and p-Pb collisions. The correlation of very forward energy with particle production at midrapidity provides direct insights into the initial stages and the subsequent evolution of the collision. Furthermore, the correlation with the production of particles with large transverse momenta at midrapidity provides information complementary to the measurements of the underlying event, which are usually interpreted in the framework of models implementing centrality-dependent multiple parton interactions. Results about very forward energy, measured by the ALICE zero degree calorimeters (ZDCs), and its dependence on the activity measured at midrapidity in pp collisions at $$ \sqrt{s} $$ s = 13 TeV and in p-Pb collisions at $$ \sqrt{s_{\mathrm{NN}}} $$ s NN = 8 . 16 TeV are discussed. The measurements performed in pp collisions are compared with the expectations of three hadronic interaction event generators: PYTHIA 6 (Perugia 2011 tune), PYTHIA 8 (Monash tune), and EPOS LHC. These results provide new constraints on the validity of models in describing the beam remnants at very forward rapidities, where perturbative QCD cannot be used. 
    more » « less