skip to main content


Search for: All records

Creators/Authors contains: "Chen, Aiping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Transition metal oxides are promising candidates for the next generation of spintronic devices due to their fascinating properties that can be effectively engineered by strain, defects, and microstructure. An excellent example can be found in ferroelastic LaCoO 3 with paramagnetism in bulk. In contrast, unexpected ferromagnetism is observed in tensile-strained LaCoO 3 films, however, its origin remains controversial. Here we simultaneously reveal the formation of ordered oxygen vacancies and previously unreported long-range suppression of CoO 6 octahedral rotations throughout LaCoO 3 films. Supported by density functional theory calculations, we find that the strong modification of Co 3 d -O 2 p hybridization associated with the increase of both Co-O-Co bond angle and Co-O bond length weakens the crystal-field splitting and facilitates an ordered high-spin state of Co ions, inducing an emergent ferromagnetic-insulating state. Our work provides unique insights into underlying mechanisms driving the ferromagnetic-insulating state in tensile-strained ferroelastic LaCoO 3 films while suggesting potential applications toward low-power spintronic devices. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Highly promising performance for future computing applications is achieved based on a new materials design. 
    more » « less
    Free, publicly-accessible full text available June 23, 2024
  3. The prototypical chalcogenide perovskite, BaZrS3 (BZS), with its direct bandgap of 1.7–1.8 eV, high chemical stability, and strong light–matter interactions, has garnered significant interest over the past few years. So far, attempts to grow BaZrS3 films have been limited mainly to physical vapor deposition techniques. Here, we report the fabrication of BZS thin films via a facile aqueous solution route of polymer-assisted deposition (PAD), where the polymer-chelated cation precursor films were sulfurized in a mixed CS2 and Ar atmosphere. The formation of a single-phase polycrystalline BZS thin film at a processing temperature of 900 °C was confirmed by X-ray diffraction and Raman spectroscopy. The stoichiometry of the films was verified by Rutherford Backscattering spectrometry and energy-dispersive X-ray spectroscopy. The BZS films showed a photoluminescence peak at around 1.8 eV and exhibited a photogenerated current under light illumination at a wavelength of 530 nm. Temperature-dependent resistivity analysis revealed that the conduction of BaZrS3 films under the dark condition could be described by the Efros–Shklovskii variable range hopping model in the temperature range of 60–300 K, with an activation energy of about 44 meV. 
    more » « less
    Free, publicly-accessible full text available April 1, 2024
  4. Free, publicly-accessible full text available June 14, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Abstract

    Multiferroic materials have generated great interest due to their potential as functional device materials. Nanocomposites have been increasingly used to design and generate new functionalities by pairing dissimilar ferroic materials, though the combination often introduces new complexity and challenges unforeseeable in single-phase counterparts. The recently developed approaches to fabricate 3D super-nanocomposites (3D‐sNC) open new avenues to control and enhance functional properties. In this work, we develop a new 3D‐sNC with CoFe2O4(CFO) short nanopillar arrays embedded in BaTiO3(BTO) film matrix via microstructure engineering by alternatively depositing BTO:CFO vertically-aligned nanocomposite layers and single-phase BTO layers. This microstructure engineering method allows encapsulating the relative conducting CFO phase by the insulating BTO phase, which suppress the leakage current and enhance the polarization. Our results demonstrate that microstructure engineering in 3D‐sNC offers a new bottom–up method of fabricating advanced nanostructures with a wide range of possible configurations for applications where the functional properties need to be systematically modified.

     
    more » « less
  7. Perovskite offers a framework that boasts various functionalities and physical properties of interest such as ferroelectricity, magnetic orderings, multiferroicity, superconductivity, semiconductor, and optoelectronic properties owing to their rich compositional diversity. These properties are also uniquely tied to their crystal distortion which is directly affected by lattice strain. Therefore, many important properties of perovskite can be further tuned through strain engineering which can be accomplished by chemical doping or simply element substitution, interface engineering in epitaxial thin films, and special architectures such as nanocomposites. In this review, we focus on and highlight the structure–property relationships of perovskite metal oxide films and elucidate the principles to manipulate the functionalities through different modalities of strain engineering approaches. 
    more » « less
  8. Abstract

    Phase separation in manganites leads to unique magnetic and electronic properties. 50% Ca‐doped LaMnO3(LCMO), at the boundary of ferromagnetic (FM) and antiferromagnetic (AFM) states in La1‐xCaxMnO3(0 ≤ x ≤ 1), is an ideal system to study phase separation behavior. The investigation reveals the effect of a 5d‐metal perovskite SrIrO3(SIO) on the phase separation, magnetic, and magnetoresistance (MR) properties of LCMO. Single‐layer and bilayer LCMO films, both appear purely ferromagnetic along the in‐plane (IP) magnetic field direction, but show the tendency of temperature‐dependent ferromagnetic and antiferromagnetic or charge‐ordered (CO) phase separation with the out‐of‐plane (OOP) applied field. The MR, and colossal magnetoresistance (CMR), observed in LCMO/SIO bilayers are two orders and an order of magnitude (in %) larger, respectively than that in the single‐layer film. The coexistence of FM and AFM/CO phases is responsible for the CMR and MR enhancement in the LCMO/SIO bilayer, pointing toward the importance of the phase separation and competition of both the individual materials in enhancing their magnetic and electronic properties.

     
    more » « less
  9. null (Ed.)
    Abstract Epitaxial vertically aligned nanocomposites (VANs) and their related architectures have shown many intriguing features that are not available from conventional two-dimensional planar multilayers and heterostructures. The ability to control constituent, interface, microstructure, strain, and defects based on VANs has enabled the multiple degrees of freedom to manipulate the optical, magnetic, electrochemical, electronic, ionic, and superconducting properties for specific applications. This field has rapidly expanded from the interest in oxide:oxide to oxide:metal, metal:nitride and nitride:nitride systems. To achieve unparalleled properties of the materials, three-dimensional super-nanocomposites based on a hybrid of VAN and multilayer architectures have been recently explored as well. The challenges and opportunities of VAN films are also discussed in this article. 
    more » « less