skip to main content


Search for: All records

Creators/Authors contains: "Chen, Chao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate traffic speed prediction is critical to many applications, from routing and urban planning to infrastructure management. With sufficient training data where all spatio-temporal patterns are well- represented, machine learning models such as Spatial-Temporal Graph Convolutional Networks (STGCN), can make reasonably accurate predictions. However, existing methods fail when the training data distribution (e.g., traffic patterns on regular days) is different from test distribution (e.g., traffic patterns on special days). We address this challenge by proposing a traffic-law-informed network called Reaction-Diffusion Graph Ordinary Differential Equation (RDGODE) network, which incorporates a physical model of traffic speed evolution based on a reliable and interpretable reaction- diffusion equation that allows the RDGODE to adapt to unseen traffic patterns. We show that with mismatched training data, RDGODE is more robust than the state-of-the-art machine learning methods in the following cases. (1) When the test dataset exhibits spatio-temporal patterns not represented in the training dataset, the performance of RDGODE is more consistent and reliable. (2) When the test dataset has missing data, RDGODE can maintain its accuracy by intrinsically imputing the missing values. 
    more » « less
    Free, publicly-accessible full text available August 6, 2024
  2. Robust explanations of machine learning models are critical to establish human trust in the models. Due to limited cognition capability, most humans can only interpret the top few salient features. It is critical to make top salient features robust to adversarial attacks, especially those against the more vulnerable gradient-based explanations. Existing defense measures robustness using lp norms, which have weaker protection power. We define explanation thickness for measuring salient features ranking stability, and derive tractable surrogate bounds of the thickness to design the R2ET algorithm to efficiently maximize the thickness and anchor top salient features. Theoretically, we prove a connection between R2ET and adversarial training. Experiments with a wide spectrum of network architectures and data modalities, including brain networks, demonstrate that R2ET attains higher explanation robustness under stealthy attacks while retaining accuracy. 
    more » « less
    Free, publicly-accessible full text available July 28, 2024
  3. Overconfidence is a common issue for deep neural networks, limiting their deployment in real-world applications. To better estimate confidence, existing methods mostly focus on fully-supervised scenarios and rely on training labels. In this paper, we propose the first confidence estimation method for a semi-supervised setting, when most training labels are unavailable. We stipulate that even with limited training labels, we can still reasonably approximate the confidence of model on unlabeled samples by inspecting the prediction consistency through the training process. We use training consistency as a surrogate function and propose a consistency ranking loss for confidence estimation. On both image classification and segmentation tasks, our method achieves state-of-the-art performances in confidence estimation. Furthermore, we show the benefit of the proposed method through a downstream active learning task. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available June 1, 2024
  7. In digital pathology, the spatial context of cells is important for cell classification, cancer diagnosis and prognosis. To model such complex cell context, however, is challenging. Cells form different mixtures, lineages, clusters and holes. To model such structural patterns in a learnable fashion, we introduce several mathematical tools from spatial statistics and topological data analysis. We incorporate such structural descriptors into a deep generative model as both conditional inputs and a differentiable loss. This way, we are able to generate high quality multi-class cell layouts for the first time. We show that the topology-rich cell layouts can be used for data augmentation and improve the performance of downstream tasks such as cell classification. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  8. Noisy labels can significantly affect the performance of deep neural networks (DNNs). In medical image segmentation tasks, annotations are error-prone due to the high demand in annotation time and in the annotators' expertise. Existing methods mostly tackle label noise in classification tasks. Their independent-noise assumptions do not fit label noise in segmentation task. In this paper, we propose a novel noise model for segmentation problems that encodes spatial correlation and bias, which are prominent in segmentation annotations. Further, to mitigate such label noise, we propose a label correction method to recover true label progressively. We provide theoretical guarantees of the correctness of the proposed method. Experiments show that our approach outperforms current state-of-the-art methods on both synthetic and real-world noisy annotations. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  9. Noisy labels can significantly affect the performance of deep neural networks (DNNs). In medical image segmentation tasks, annotations are error-prone due to the high demand in annotation time and in the annotators' expertise. Existing methods mostly tackle label noise in classification tasks. Their independent-noise assumptions do not fit label noise in segmentation task. In this paper, we propose a novel noise model for segmentation problems that encodes spatial correlation and bias, which are prominent in segmentation annotations. Further, to mitigate such label noise, we propose a label correction method to recover true label progressively. We provide theoretical guarantees of the correctness of the proposed method. Experiments show that our approach outperforms current state-of-the-art methods on both synthetic and real-world noisy annotations. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  10. Free, publicly-accessible full text available June 7, 2024