skip to main content


Search for: All records

Creators/Authors contains: "Chen, Kai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lactones are cyclic esters with extensive applications in materials science, medicinal chemistry, and the food and perfume industries. Nature’s strategy for the synthesis of many lactones found in natural products always relies on a single type of retrosynthetic strategy, a C−O bond disconnection. Here, we describe a set of laboratory-engineered enzymes that use a new-tonature C−C bond-forming strategy to assemble diverse lactone structures. These engineered “carbene transferases” catalyze intramolecular carbene insertions into benzylic or allylic C−H bonds, which allow for the synthesis of lactones with different ring sizes and ring scaffolds from simple starting materials. Starting from a serine-ligated cytochrome P450 variant previously engineered for other carbene-transfer activities, directed evolution generated a variant P411-LAS-5247, which exhibits a high activity for constructing a five-membered ε-lactone, lactam, and cyclic ketone products (up to 5600 total turnovers (TTN) and >99% enantiomeric excess (ee)). Further engineering led to variants P411-LAS-5249 and P411-LAS-5264, which deliver six-membered δ-lactones and seven-membered ε-lactones, respectively, overcoming the thermodynamically unfavorable ring strain associated with these products compared to the γ-lactones. This new carbene-transfer activity was further extended to the synthesis of complex lactone scaffolds based on fused, bridged, and spiro rings. The enzymatic platform developed here complements natural biosynthetic strategies for lactone assembly and expands the structural diversity of lactones accessible through C−H functionalization. 
    more » « less
    Free, publicly-accessible full text available January 17, 2025
  2. Free, publicly-accessible full text available November 28, 2024
  3. Abstract

    Wearable devices benefit from the use of stretchable conjugated polymers (CPs). Traditionally, the design of stretchable CPs is based on the assumption that a low elastic modulus (E) is crucial for achieving high stretchability. However, this research, which analyzes the mechanical properties of 65 CP thin films, challenges this notion. It is discovered that softness alone does not determine stretchability; rather, it is the degree of entanglement that is critical. This means that rigid CPs can also exhibit high stretchability, contradicting conventional wisdom. To inverstigate further, the mechanical behavior, electrical properties, and deformation mechanism of two model CPs: a glassy poly(3‐butylthiophene‐2,5‐diyl) (P3BT) with anEof 2.2 GPa and a viscoelastic poly(3‐octylthiophene‐2,5‐diyl) (P3OT) with anEof 86 MPa, are studied. Ex situ transmission X‐ray scattering and polarized UV–vis spectroscopy revealed that only the initial strain (i.e., <20%) exhibits different chain alignment mechanisms between two polymers, while both rigid and soft P3ATs showed similarly behavior at larger strains. By challenging the conventional design metric of lowEfor high stretchability and highlighting the importance of entanglement, it is hoped to broaden the range of CPs available for use in wearable devices.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available August 4, 2024
  5. Free, publicly-accessible full text available May 8, 2024
  6. A warehouse delivery problem consists of a set of robots that undertake delivery jobs within a warehouse. Items are moved around the warehouse in response to events. A solution to a warehouse delivery problem is a collision-free schedule of robot movements and actions that ensures that all delivery jobs are completed and each robot is returned to its docking station. While the warehouse delivery problem is related to existing research, such as the study of multi-agent path finding (MAPF), the specific industrial requirements necessitated a novel approach that diverges from these other approaches. For example, our problem description was more suited to formalizing the warehouse in terms of a weighted directed graph rather than the more common grid-based formalization. We formalize and encode the warehouse delivery problem in Answer Set Programming (ASP) extended with difference constraints. We systematically develop and study different encoding variants, with a view to computing good quality solutions in near real-time. In particular, application specific criteria are contrasted against the traditional notion of makespan minimization as a measure of solution quality. The encoding is tested against both crafted and industry data and experiments run using the Hybrid ASP solver clingo[dl]. 
    more » « less
  7. Silicon photonic nanostructures with massive Dirac dispersion offer an opportunity for emulating relativistic trapping of light. 
    more » « less
  8. Molecular doping can increase the conductivity of organic semiconductors and plays an increasingly important role in emerging and established plastic electronics applications. 4-(1,3-Dimethyl-2,3-dihydro-1 H -benzimidazol-2-yl)- N , N -dimethylaniline (N-DMBI-H) and tris(pentafluorophenyl)borane (BCF) are established n- and p-dopants, respectively, but neither functions as a simple one-electron redox agent. Molecular hydrogen has been suggested to be a byproduct in several proposed mechanisms for doping using both N-DMBI-H and BCF. In this paper we show for the first time the direct detection of molecular hydrogen in the uncatalysed doping of a variety of polymeric and molecular semiconductors using these dopants. Our results provide insight into the doping mechanism, providing information complementary to that obtained from more commonly applied methods such as optical, electron spin resonance, and electrical measurements. 
    more » « less
  9. Pinpointing the geographic location of an IP address is important for a range of location-aware applications spanning from targeted advertising to fraud prevention. The majority of traditional measurement-based and recent learning-based methods either focus on the efficient employment of topology or utilize data mining to find clues of the target IP in publicly available sources. Motivated by the limitations in existing works, we propose a novel framework named GraphGeo, which provides a complete processing methodology for street-level IP geolocation with the application of graph neural networks. It incorporates IP hosts knowledge and kinds of neighborhood relationships into the graph to infer spatial topology for high-quality geolocation prediction. We explicitly consider and alleviate the negative impact of uncertainty caused by network jitter and congestion, which are pervasive in complicated network environments. Extensive evaluations across three large-scale real-world datasets demonstrate that GraphGeo significantly reduces the geolocation errors compared to the state-of-the-art methods. Moreover, the proposed framework has been deployed on the web platform as an online service for 6 months. 
    more » « less
  10. Abstract

    Land use intensification has led to conspicuous changes in plant and animal communities across the world. Shifts in trait‐based functional composition have recently been hypothesized to manifest at lower levels of environmental change when compared to species‐based taxonomic composition; however, little is known about the commonalities in these responses across taxonomic groups and geographic regions. We investigated this hypothesis by testing for taxonomic and geographic similarities in the composition of riverine fish and insect communities across gradients of land use in major hydrological regions of the conterminous United States. We analyzed an extensive data set representing 556 species and 33 functional trait modalities from 8023 fish communities and 1434 taxa and 50 trait modalities from 5197 aquatic insect communities. Our results demonstrate abrupt threshold changes in both taxonomic and functional community composition due to land use conversion. Functional composition consistently demonstrated lower land use threshold responses compared to taxonomic composition for both fish (urbanp = 0.069; agriculturep = 0.029) and insect (urbanp = 0.095; agriculturep = 0.043) communities according to gradient forest models. We found significantly lower thresholds for urban versus agricultural land use for fishes (taxonomic and functionalp < 0.001) and insects (taxonomicp = 0.001; functionalp = 0.033). We further revealed that threshold responses in functional composition were more geographically consistent than for taxonomic composition to both urban and agricultural land use change. Traits contributing the most to overall functional composition change differed along urban and agricultural land gradients and conformed to predicted ecological mechanisms underpinning community change. This study points to reliable early‐warning thresholds that accurately forecast compositional shifts in riverine communities to land use conversion, and highlight the importance of considering trait‐based indicators of community change to inform large‐scale land use management strategies and policies.

     
    more » « less