skip to main content


Search for: All records

Creators/Authors contains: "Chen, Wuyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The prosperity of deep learning and automated machine learning (AutoML) is largely rooted in the development of novel neural networks -- but what defines and controls the "goodness" of networks in an architecture space? Test accuracy, a golden standard in AutoML, is closely related to three aspects: (1) expressivity (how complicated functions a network can approximate over the training data); (2) convergence (how fast the network can reach low training error under gradient descent); (3) generalization (whether a trained network can be generalized from the training data to unseen samples with low test error). However, most previous theory papers focus on fixed model structures, largely ignoring sophisticated networks used in practice. To facilitate the interpretation and understanding of the architecture design by AutoML, we target connecting a bigger picture: how does the architecture jointly impact its expressivity, convergence, and generalization? We demonstrate the "no free lunch" behavior in networks from an architecture space: given a fixed budget on the number of parameters, there does not exist a single architecture that is optimal in all three aspects. In other words, separately optimizing expressivity, convergence, and generalization will achieve different networks in the architecture space. Our analysis can explain a wide range of observations in AutoML. Experiments on popular benchmarks confirm our theoretical analysis. Our codes are attached in the supplement. 
    more » « less
    Free, publicly-accessible full text available September 15, 2024
  2. Semantic segmentation for scene understanding is nowadays widely demanded, raising significant challenges for the algorithm efficiency, especially its applications on resource-limited platforms. Current segmentation models are trained and evaluated on massive high-resolution scene images (“data-level”) and suffer from the expensive computation arising from the required multi-scale aggregation (“network level”). In both folds, the computational and energy costs in training and inference are notable due to the often desired large input resolutions and heavy computational burden of segmentation models. To this end, we propose DANCE, general automated DA ta- N etwork C o-optimization for E fficient segmentation model training and inference . Distinct from existing efficient segmentation approaches that focus merely on light-weight network design, DANCE distinguishes itself as an automated simultaneous data-network co-optimization via both input data manipulation and network architecture slimming. Specifically, DANCE integrates automated data slimming which adaptively downsamples/drops input images and controls their corresponding contribution to the training loss guided by the images’ spatial complexity. Such a downsampling operation, in addition to slimming down the cost associated with the input size directly, also shrinks the dynamic range of input object and context scales, therefore motivating us to also adaptively slim the network to match the downsampled data. Extensive experiments and ablating studies (on four SOTA segmentation models with three popular segmentation datasets under two training settings) demonstrate that DANCE can achieve “all-win” towards efficient segmentation (reduced training cost, less expensive inference, and better mean Intersection-over-Union (mIoU)). Specifically, DANCE can reduce ↓25%–↓77% energy consumption in training, ↓31%–↓56% in inference, while boosting the mIoU by ↓0.71%–↑ 13.34%. 
    more » « less
  3. David Wipf (Ed.)
    Learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods, aiming at reducing the laborious iterations of hand engineering. It automates the design of an optimization method based on its performance on a set of training problems. This data-driven procedure generates methods that can efficiently solve problems similar to those in training. In sharp contrast, the typical and traditional designs of optimization methods are theory-driven, so they obtain performance guarantees over the classes of problems specified by the theory. The difference makes L2O suitable for repeatedly solving a particular optimization problem over a specific distribution of data, while it typically fails on out-of-distribution problems. The practicality of L2O depends on the type of target optimization, the chosen architecture of the method to learn, and the training procedure. This new paradigm has motivated a community of researchers to explore L2O and report their findings. This article is poised to be the first comprehensive survey and benchmark of L2O for continuous optimization. We set up taxonomies, categorize existing works and research directions, present insights, and identify open challenges. We benchmarked many existing L2O approaches on a few representative optimization problems. For reproducible research and fair benchmarking purposes, we released our software implementation and data in the package Open-L2O at https://github.com/VITA-Group/Open-L2O. 
    more » « less
  4. null (Ed.)