skip to main content


Search for: All records

Creators/Authors contains: "Cheong, Sang-Wook"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electric currents have the intriguing ability to induce magnetization in nonmagnetic crystals with sufficiently low crystallographic symmetry. Some associated phenomena include the non-linear anomalous Hall effect in polar crystals and the nonreciprocal directional dichroism in chiral crystals when magnetic fields are applied. In this work, we demonstrate that the same underlying physics is also manifested in the electronic tunneling process between the surface of a nonmagnetic chiral material and a magnetized scanning probe. In the paramagnetic but chiral metallic compound Co1/3NbS2, the magnetization induced by the tunneling current is shown to become detectable by its coupling to the magnetization of the tip itself. This results in a contrast across different chiral domains, achieving atomic-scale spatial resolution of structural chirality. To support the proposed mechanism, we used first-principles theory to compute the chirality-dependent current-induced magnetization and Berry curvature in the bulk of the material. Our demonstration of this magnetochiral tunneling effect opens up an avenue for investigating atomic-scale variations in the local crystallographic symmetry and electronic structure across the structural domain boundaries of low-symmetry nonmagnetic crystals.

     
    more » « less
    Free, publicly-accessible full text available March 5, 2025
  2. Free, publicly-accessible full text available May 1, 2024
  3. Abstract The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin S ≥ 1. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic S = 1 Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic S = 1 Haldane chain material Y 2 BaNiO 5 using Ni L 3 -edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y 2 BaNiO 5 show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations. 
    more » « less
  4. Abstract Optical manipulation of coherent phonon frequency in two-dimensional (2D) materials could advance the development of ultrafast phononics in atomic-thin platforms. However, conventional approaches for such control are limited to doping, strain, structural or thermal engineering. Here, we report the experimental observation of strong laser-polarization control of coherent phonon frequency through time-resolved pump-probe spectroscopic study of van der Waals (vdW) materials Fe 3 GeTe 2 . When the polarization of the pumping laser with tilted incidence is swept between in-plane and out-of-plane orientations, the frequencies of excited phonons can be monotonically tuned by as large as 3% (~100 GHz). Our first-principles calculations suggest the strong planar and vertical inter-atomic interaction asymmetry in layered materials accounts for the observed polarization-dependent phonon frequencies, as in-plane/out-of-plane polarization modifies the restoring force of the lattice vibration differently. Our work provides insightful understanding of the coherent phonon dynamics in layered vdW materials and opens up new avenues to optically manipulating coherent phonons. 
    more » « less
  5. Abstract

    The layered perovskite Ca3Mn2O7(CMO) is a hybrid improper ferroelectric candidate proposed for room temperature multiferroicity, which also displays negative thermal expansion behavior due to a competition between coexisting polar and nonpolar phases. However, little is known about the atomic-scale structure of the polar/nonpolar phase coexistence or the underlying physics of its formation and transition. In this work, we report the direct observation of double bilayer polar nanoregions (db-PNRs) in Ca2.9Sr0.1Mn2O7using aberration-corrected scanning transmission electron microscopy (S/TEM). In-situ TEM heating experiments show that the db-PNRs can exist up to 650 °C. Electron energy loss spectroscopy (EELS) studies coupled with first-principles calculations demonstrate that the stabilization mechanism of the db-PNRs is directly related to an Mn oxidation state change (from 4+ to 2+), which is linked to the presence of Mn antisite defects. These findings open the door to manipulating phase coexistence and achieving exotic properties in hybrid improper ferroelectric.

     
    more » « less
  6. Spin chains in solid state materials are quintessential quantum systems with potential applications in spin-based logic, memory, quantum communication, and computation. A critical challenge is the experimental determination of spin lifetimes with the ultimate goal of increasing it. Local measurements by scanning tunneling microscopy (STM) have demonstrated the importance of decoupling spins from their environment, with markedly improved lifetimes in spin chains on the surfaces of band insulators. In this work we use low-temperature scanning tunneling microscopy to reveal long-lifetime excitations in a chain of spin-1/2 electrons embedded in a charge density wave Mott insulator, 1T-TaS 2 . Naturally occurring domain walls trap chains of localized spin-1/2 electrons in nearby sites, whose energies lie inside the Mott gap. Spin-polarized measurements on these sites show distinct two-level switching noise, as well as negative differential resistance in the dI/dV spectra, typically associated with spin fluctuations. The excitations show exceptionally long lifetimes of a few seconds at 300 mK. Our work suggests that layered Mott insulators in the chalcogenide family, which are amenable to exfoliation and lithography, may provide a viable platform for quantum applications. 
    more » « less
  7. Data files for the manuscript "Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet".

    Reference: A. Nag, A. Nocera, S. Agrestini, M. Garcia-Fernandez, A. C. Walters, Sang-Wook Cheong, S. Johnston, and Ke-Jin Zhou, "Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet". arXiv:2111.03625 (2021).

    Preprint: arXiv:2111.03625 (2021), URL: https://arxiv.org/abs/2111.03625

     
    more » « less