skip to main content


Search for: All records

Creators/Authors contains: "Chester, Mikhail"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Infrastructure systems have legacies that continue to define their priorities, goals, flexibility, and ability to make sense of their environments. These legacies may or may not align with future needs, but regardless of alignment, they may restrict viable pathways forward. Infrastructure ‘lock-in’ has not been sufficiently confronted in infrastructure systems. Lock-in can loosely be interpreted as internal and external pressures that constrain a system, and it encourages self-reinforcing feedback where the system becomes resistant to change. By acknowledging and recognizing that lock-in exists at small and large scales, perpetuated by individuals, organizations, and institutions, infrastructure managers can critically reflect upon biases, assumptions, and decision-making approaches. This article describes six distinct domains of lock-in: technological, social, economic, individual, institutional, and epistemic. Following this description, strategies for unlocking lock-in, broadly and by domain, are explored before being contextualized to infrastructure systems. Ultimately, infrastructure managers must make a decision between a locked in and faltering but familiar system or a changing and responsive but unfamiliar system, where both are, inevitably, accepting higher levels of risk than typically accustomed. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    Disruption of legacy infrastructure systems by novel digital and connected technologies represents not simply the rise of cyberphysical systems as hybrid physical and digital assets but, ultimately, the integration of legacy systems into a new cognitive ecosystem. This cognitive ecosystem, an ecology of massive data flows, artificial intelligence, institutional and intellectual structures, and connected technologies, is poised to alter how humans and artificial intelligence understand and control our world. Infrastructure managers need to be ready for this paradigm shift, recognizing their systems are increasingly being absorbed into an emerging suite of data, analytical tools, and decisionmaking technologies that will fundamentally restructure how legacy systems behave and are controlled, how decisions are made, and most importantly how workers interact with the systems. Infrastructure managers must restructure their organizations and engage in cross-organizational sensemaking if they are to be capable of navigating the complexity of the cognitive ecosystem. The cognitive ecosystem is fundamentally poised to change what infrastructures are, necessitating the need for managers to take a close look at the functions and actions of their own systems. The continuing evolution of the Anthropocene and the cognitive ecosystem has profound implications for infrastructure education. A sustained commitment to change is necessary that restructures and reorients infrastructure organizations within the cognitive ecosystem, where knowledge is generated, and control of services is wielded by myriad stakeholders.

     
    more » « less
  3. Abstract

    Complex adaptive systems – such as critical infrastructures (CI) – are defined by their vast, multi-level interactions and emergent behaviors, but this elaborate web of interactions often conceals relationships. For instance, CI is often reduced to technological components, ignoring that social and ecological components are also embedded, leading to unintentional consequences from disturbance events. Analysis of CI as social-ecological-technological systems (SETS) can support integrated decision-making and increase infrastructure’s capacity for resilience to climate change. We assess the impacts of an extreme precipitation event in Phoenix, AZ to identify pathways of disruption and feedback loops across SETS as presented in an illustrative causal loop diagram, developed through semi-structured interviews with researchers and practitioners and cross-validated with a literature review. The causal loop diagram consists of 19 components resulting in hundreds of feedback loops and cascading failures, with surface runoff, infiltration, and water bodies as well as power, water, and transportation infrastructures appearing to have critical roles in maintaining system services. We found that pathways of disruptions highlight potential weak spots within the system that could benefit from climate adaptation, and feedback loops may serve as potential tools to divert failure at the root cause. This method of convergence research shows potential as a useful tool to illustrate a broader perspective of urban systems and address the increasing complexity and uncertainty of the Anthropocene.

     
    more » « less
  4. Abstract

    Faced with destabilizing conditions in the Anthropocene, infrastructure resilience modeling remains challenged to confront increasingly complex conditions toward quickly and meaningfully advancing adaptation. Data gaps, increasingly interconnected systems, and accurate behavior estimation (across scales and as both gradual and cascading failure) remain challenges for infrastructure modelers. Yet novel approaches are emerging—largely independently—that, if brought together, offer significant opportunities for rapidly advancing how we understand vulnerabilities and surgically invest in resilience. Of particular promise are interdependency modeling, cascading failure modeling, and synthetic network generation. We describe a framework for integrating these three domains toward an integrated modeling framework to estimate infrastructure networks where no data exist, connect infrastructure to establish interdependencies, assess the vulnerabilities of these interconnected infrastructure to hazards, and simulate how failures may propagate across systems. We draw from the literature as an evidence base, provide a conceptual structure for implementation, and conclude by discussing the significance of such a framework and the critical tools it may provide to infrastructure researchers and managers.

     
    more » « less
  5. Free, publicly-accessible full text available August 1, 2024
  6. Urban heat exposure is an increasing health risk among urban dwellers. Many cities are considering accommodating active mobility, especially walking and biking, to reduce greenhouse gas emissions. However, promoting active mobility without proper planning and transportation infrastructure to combat extreme heat exposure may cause more heat-related morbidity and mortality, particularly in future with projected climate change. This study estimated the effectiveness of active trip heat exposure mitigation under built environment and travel behavior change. Simulations of the Phoenix metro region's 624,987 active trips were conducted using the activity-based travel model (ABM), mean radiant temperature (T MRT , net human radiation exposure), transportation network, and local climate zones. Two scenarios were designed to reduce traveler exposure: one that focuses on built environment change (making neighborhoods cooler) and the other on travel behavior (switching from shorter travel time but higher exposure routes to longer travel time but cooler routes) change. Travelers experienced T MRT heat exposure ranging from 29°C to 76°C (84°F to 168°F) without environmental or behavioral change. Active trip T MRT exposures were reduced by an average of 1.2–3.7°C when the built environment was changed from a hotter to cooler design. Behavioral changes cooled up to 10 times more trips than changes in built environment changes. The marginal benefit of cooling decreased as the number of cooled corridors transformed increased. When the most traveled 10 km of corridors were cooled, the marginal benefit affected over 1,000 trips/km. However, cooling all corridors results in marginal benefits as low as 1 trip/km. The results reveal that heavily traveled corridors should be prioritized with limited resources, and the best cooling results come from environment and travel behavior change together. The results show how to surgically invest in travel behavior and built environment change to most effectively protect active travelers. 
    more » « less
  7. Abstract

    As infrastructure confront rapidly changing environments, there is an immediate need to provide the flexibility to pivot resources and how infrastructures are prioritized. Yet infrastructures are often categorized based on static criticality framings. We describedynamic criticalityas the flexibility to reprioritize infrastructure resources during disturbances. We find that the most important prerequisite for dynamic criticality is organizational adaptive capacity characterized by flexible goals, structures, sensemaking, and strategies. Dynamic capabilities are increasingly important in the Anthropocene, where accelerating conditions, uncertainty, and growing complexity are challenging infrastructures. We review sectors that deployed dynamic management approaches amidst changing disturbances: leadership and organizational change, defense, medicine, manufacturing, and disaster response. We use an inductive thematic analysis to identify key themes and competencies and analyze capabilities that describe dynamic criticality. These competencies drive adaptive capacity and open up the flexibility to pivot what is deemed critical, depending on the particulars of the hazard. We map these competencies to infrastructure systems and describe how infrastructure organizations may build adaptive capacity toward flexible priorities.

     
    more » « less
  8. Abstract

    Our urban systems and their underlying sub-systems are designed to deliver only a narrow set of human-centered services, with little or no accounting or understanding of how actions undercut the resilience of social-ecological-technological systems (SETS). Embracing a SETS resilience perspective creates opportunities for novel approaches to adaptation and transformation in complex environments. We: i) frame urban systems through a perspective shift from control to entanglement, ii) position SETS thinking as novel sensemaking to create repertoires of responses commensurate with environmental complexity (i.e., requisite complexity), and iii) describe modes of SETS sensemaking for urban system structures and functions as basic tenets to build requisite complexity. SETS sensemaking is an undertaking to reflexively bring sustained adaptation, anticipatory futures, loose-fit design, and co-governance into organizational decision-making and to help reimagine institutional structures and processes as entangled SETS.

     
    more » « less