skip to main content


Search for: All records

Creators/Authors contains: "Chi, Heng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a virtual element method (VEM)-based topology optimization framework using polyhedral elements, which allows for convenient handling of non-Cartesian design domains in three dimensions. We take full advantage of the VEM properties by creating a unified approach in which the VEM is employed in both the structural and the optimization phases. In the structural problem, the VEM is adopted to solve the three-dimensional elasticity equation. Compared to the finite element method, the VEM does not require numerical integration (when linear elements are used) and is less sensitive to degenerated elements (e.g., ones with skinny faces or small edges). In the optimization problem, we introduce a continuous approximation of material densities using the VEM basis functions. When compared to the standard element-wise constant approximation, the continuous approximation enriches the geometrical representation of structural topologies. Through two numerical examples with exact solutions, we verify the convergence and accuracy of both the VEM approximations of the displacement and material density fields. We also present several design examples involving non-Cartesian domains, demonstrating the main features of the proposed VEM-based topology optimization framework. The source code for a MATLAB implementation of the proposed work, named PolyTop3D, is available in the (electronic) Supplementary Material accompanying this publication. 
    more » « less
  2. Summary

    We present a general framework to solve elastodynamic problems by means of the virtual element method (VEM) with explicit time integration. In particular, the VEM is extended to analyze nearly incompressible solids using the B‐bar method. We show that, to establish a B‐bar formulation in the VEM setting, one simply needs to modify the stability term to stabilize only the deviatoric part of the stiffness matrix, which requires no additional computational effort. Convergence of the numerical solution is addressed in relation to stability, mass lumping scheme, element size, and distortion of arbitrary elements, either convex or nonconvex. For the estimation of the critical time step, two approaches are presented, ie, the maximum eigenvalue of a system of mass and stiffness matrices and an effective element length. Computational results demonstrate that small edges on convex polygonal elements do not significantly affect the critical time step, whereas convergence of the VEM solution is observed regardless of the stability term and the element shape in both two and three dimensions. This extensive investigation provides numerical recipes for elastodynamic VEMs with explicit time integration and related problems.

     
    more » « less