skip to main content


Search for: All records

Creators/Authors contains: "Chibueze, J. O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    This study presents a detailed analysis of the GAL045.804 − 0.356 massive star-forming clump. A high-angular resolution and sensitivity observations were conducted using MeerKAT at 1.28 GHz and ALMA interferometer at 1.3 mm. Two distinct centimetre radio continuum emissions (source A and source B) were identified within the clump. A comprehensive investigation was carried out on source A, the G45.804 − 0.355 star-forming region (SFR) due to its association with Extended Green Object (EGO), 6.7 GHz methanol maser and the spatial coincidence with the peak of the dust continuum emission at 870 µm. The ALMA observations revealed seven dense dust condensations (MM1–MM7) in source A. The brightest (Sν ∼ 87 mJy) and massive main dense core, MM1, was co-located with the 6.7 GHz methanol maser. Explorations into the kinematics revealed gas motions characterized by a velocity gradient across the MM1 core. Furthermore, molecular line emission showed the presence of an extended arm-like structure, with a physical size of 0.25 pc × 0.18 pc (∼ 50 000 au × 30 000 au) at a distance of 7.3 kpc. Amongst these arms, two arms were prominently identified in both the dust continuum and some of the molecular lines. A blue-shifted absorption P-Cygni profile was seen in the H2CO line spectrum. The findings of this study are both intriguing and new, utilizing data from MeerKAT and ALMA to investigate the characteristics of the AGAL45 clump. The evidence of spiral arms, the compact nature of the EGO and < 2 km s−1 velocity gradient are all indicative of G45.804 − 0.355 being oriented face-on.

     
    more » « less
  2. ABSTRACT

    We present the discovery of FRB 20210410D with the MeerKAT radio interferometer in South Africa, as part of the MeerTRAP commensal project. FRB 20210410D has a dispersion measure DM = 578.78 ± 2 ${\rm pc \, cm^{-3}}$ and was localized to subarcsec precision in the 2 s images made from the correlation data products. The localization enabled the association of the FRB with an optical galaxy at z = 0.1415, which when combined with the DM places it above the 3σ scatter of the Macquart relation. We attribute the excess DM to the host galaxy after accounting for contributions from the Milky Way’s interstellar medium and halo, and the combined effects of the intergalactic medium and intervening galaxies. This is the first FRB that is not associated with a dwarf galaxy to exhibit a likely large host galaxy DM contribution. We do not detect any continuum radio emission at the FRB position or from the host galaxy down to a 3σ rms of 14.4 $\mu$Jy beam−1. The FRB has a scattering delay of $29.4^{+2.8}_{-2.7}$ ms at 1 GHz, and exhibits candidate subpulses in the spectrum, which hint at the possibility of it being a repeating FRB. Although not constraining, we note that this FRB has not been seen to repeat in 7.28 h at 1.3 GHz with MeerKAT, 3 h at 2.4 GHz with Murriyang, and 5.7 h at simultaneous 2.3 GHz and 8.4 GHz observations with the Deep Space Network. We encourage further follow-up to establish a possible repeating nature.

     
    more » « less
  3. Context. During their lifetimes, galaxy clusters grow through the accretion of matter from the filaments of the large-scale structure and from mergers with other clusters. These mergers release a large amount of energy into the intracluster medium (ICM) through merger shocks and turbulence. These phenomena are associated with the formation of radio sources known as radio relics and radio halos, respectively. Radio relics and halos are unique proxies for studying the complex properties of these dynamically active regions of clusters and the microphysics of the ICM more generally. Aims. Abell 3667 is a spectacular example of a merging system that hosts a large pair of radio relics. Due to its proximity ( z  = 0.0553) and large mass, the system enables the study of these sources to a uniquely high level of detail. However, being located at Dec = −56.8°, the cluster could only be observed with a limited number of radio facilities. Methods. We observed Abell 3667 with MeerKAT as part of the MeerKAT Galaxy Cluster Legacy Survey. We used these data to study the large-scale emission of the cluster, including its polarisation and spectral properties. The results were then compared with simulations. Results. We present the most detailed view of the radio relic system in Abell 3667 to date, with a resolution reaching 3 kpc. The relics are filled with a network of filaments with different spectral and polarisation properties that are likely associated with multiple regions of particle acceleration and local enhancements of the magnetic field. Conversely, the magnetic field in the space between filaments has strengths close to what would be expected in unperturbed regions at the same cluster-centric distance. Comparisons with magnetohydrodynamic cosmological and Lagrangian simulations support the idea of filaments as multiple acceleration sites. Our observations also confirm the presence of an elongated radio halo, developed in the wake of the bullet-like sub-cluster that merged from the south-east. Finally, we associate the process of magnetic draping with a thin polarised radio source surrounding the remnant of the bullet’s cool core. Conclusions. Our observations have unveiled the complexity of the interplay between the thermal and non-thermal components in the most active regions of a merging cluster. Both the intricate internal structure of radio relics and the direct detection of magnetic draping around the merging bullet are powerful examples of the non-trivial magnetic properties of the ICM. Thanks to its sensitivity to polarised radiation, MeerKAT will be transformational in the study of these complex phenomena. 
    more » « less
  4. MeerKAT’s large number (64) of 13.5 m diameter antennas, spanning 8 km with a densely packed 1 km core, create a powerful instrument for wide-area surveys, with high sensitivity over a wide range of angular scales. The MeerKAT Galaxy Cluster Legacy Survey (MGCLS) is a programme of long-track MeerKAT L -band (900−1670 MHz) observations of 115 galaxy clusters, observed for ∼6−10 h each in full polarisation. The first legacy product data release (DR1), made available with this paper, includes the MeerKAT visibilities, basic image cubes at ∼8″ resolution, and enhanced spectral and polarisation image cubes at ∼8″ and 15″ resolutions. Typical sensitivities for the full-resolution MGCLS image products range from ∼3−5 μJy beam −1 . The basic cubes are full-field and span 2° × 2°. The enhanced products consist of the inner 1.2° × 1.2° field of view, corrected for the primary beam. The survey is fully sensitive to structures up to ∼10′ scales, and the wide bandwidth allows spectral and Faraday rotation mapping. Relatively narrow frequency channels (209 kHz) are also used to provide H  I mapping in windows of 0 <  z  < 0.09 and 0.19 <  z  < 0.48. In this paper, we provide an overview of the survey and the DR1 products, including caveats for usage. We present some initial results from the survey, both for their intrinsic scientific value and to highlight the capabilities for further exploration with these data. These include a primary-beam-corrected compact source catalogue of ∼626 000 sources for the full survey and an optical and infrared cross-matched catalogue for compact sources in the primary-beam-corrected areas of Abell 209 and Abell S295. We examine dust unbiased star-formation rates as a function of cluster-centric radius in Abell 209, extending out to 3.5 R 200 . We find no dependence of the star-formation rate on distance from the cluster centre, and we observe a small excess of the radio-to-100 μm flux ratio towards the centre of Abell 209 that may reflect a ram pressure enhancement in the denser environment. We detect diffuse cluster radio emission in 62 of the surveyed systems and present a catalogue of the 99 diffuse cluster emission structures, of which 56 are new. These include mini-halos, halos, relics, and other diffuse structures for which no suitable characterisation currently exists. We highlight some of the radio galaxies that challenge current paradigms, such as trident-shaped structures, jets that remain well collimated far beyond their bending radius, and filamentary features linked to radio galaxies that likely illuminate magnetic flux tubes in the intracluster medium. We also present early results from the H  I analysis of four clusters, which show a wide variety of H  I mass distributions that reflect both sensitivity and intrinsic cluster effects, and the serendipitous discovery of a group in the foreground of Abell 3365. 
    more » « less