skip to main content


Search for: All records

Creators/Authors contains: "Choi, Ena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We analyse a suite of 29 high-resolution zoom-in cosmological hydrodynamic simulations of massive galaxies with stellar masses $M_{\rm star} \gt 10^{10.9} \, \mathrm{M}_\odot$, with the goal of better understanding merger activity among active galactic nuclei (AGN), AGN activity in merging systems, SMBH growth during mergers, and the role of gas content in triggering AGN. Using the radiative transfer code Powderday, we generate HST-WFC3 F160W mock observations of central galaxies at redshift 0.5 < z < 3; convolve each image with a CANDELS-like point spread function; stitch each image into a real CANDELS image; and identify mergers within the synthetic images using commonly adopted non-parametric statistics. We study the connection between mergers and AGN activity in both the simulations and synthetic images and find reasonable agreement with observations from CANDELS. We find that AGN activity is not primarily driven by major mergers (stellar mass ratio > 1:4) except in a select few cases of gas-rich mergers at low redshifts (0.5 < z < 0.9). We also find that major mergers do not significantly grow the central SMBHs, indicating major mergers do not sustain long-term accretion. Moreover, the most luminous AGN in our simulations (Lbol > 1045 erg s−1) are no more likely than inactive galaxies (Lbol < 1043 erg s−1) to be found in merging systems. We conclude that mergers are not the primary drivers of AGN activity in the simulated massive galaxies studied here.

     
    more » « less
  2. ABSTRACT Feedback driven by jets from active galactic nuclei is believed to be responsible for reducing cooling flows in cool-core galaxy clusters. We use simulations to model feedback from hydrodynamic jets in isolated haloes. While the jet propagation converges only after the diameter of the jet is well resolved, reliable predictions about the effects these jets have on the cooling time distribution function only require resolutions sufficient to keep the jet-inflated cavities stable. Comparing different model variations, as well as an independent jet model using a different hydrodynamics code, we show that the dominant uncertainties are the choices of jet properties within a given model. Independent of implementation, we find that light, thermal jets with low momentum flux tend to delay the onset of a cooling flow more efficiently on a 50 Myr time-scale than heavy, kinetic jets. The delay of the cooling flow originates from a displacement and boost in entropy of the central gas. If the jet kinetic luminosity depends on accretion rate, collimated, light, hydrodynamic jets are able to reduce cooling flows in haloes, without a need for jet precession or wide opening angles. Comparing the jet feedback with a ‘kinetic wind’ implementation shows that equal amounts of star formation rate reduction can be achieved by different interactions with the halo gas: the jet has a larger effect on the hot halo gas while leaving the denser, star-forming phase in place, while the wind acts more locally on the star-forming phase, which manifests itself in different time-variability properties. 
    more » « less
    Free, publicly-accessible full text available May 23, 2024
  3. Abstract We present the empirical dust attenuation (EDA) framework—a flexible prescription for assigning realistic dust attenuation to simulated galaxies based on their physical properties. We use the EDA to forward model synthetic observations for three state-of-the-art large-scale cosmological hydrodynamical simulations: SIMBA, IllustrisTNG, and EAGLE. We then compare the optical and UV color–magnitude relations, ( g − r ) − M r and (far-UV −near-UV) − M r , of the simulations to a M r < − 20 and UV complete Sloan Digital Sky Survey galaxy sample using likelihood-free inference. Without dust, none of the simulations match observations, as expected. With the EDA, however, we can reproduce the observed color–magnitude with all three simulations. Furthermore, the attenuation curves predicted by our dust prescription are in good agreement with the observed attenuation–slope relations and attenuation curves of star-forming galaxies. However, the EDA does not predict star-forming galaxies with low A V since simulated star-forming galaxies are intrinsically much brighter than observations. Additionally, the EDA provides, for the first time, predictions on the attenuation curves of quiescent galaxies, which are challenging to measure observationally. Simulated quiescent galaxies require shallower attenuation curves with lower amplitude than star-forming galaxies. The EDA, combined with forward modeling, provides an effective approach for shedding light on dust in galaxies and probing hydrodynamical simulations. This work also illustrates a major limitation in comparing galaxy formation models: by adjusting dust attenuation, simulations that predict significantly different galaxy populations can reproduce the same UV and optical observations. 
    more » « less